OFFSET
1,1
COMMENTS
Let E be an elliptic curve over GF(q). A k-arc on E is a set of k points in E(GF(q)) such that no three are collinear (in the projective plane over GF(q)). Hirschfeld showed that if the number #E(GF(q)) of GF(q)-rational points on E is even, then there exists a k-arc on E for k = #E(GF(q))/2. Here, a(n) denotes the largest possible k arising from this construction, hence a(n) = floor(A005523(n)/2). Note that a(n) is not necessarily the maximal k such that there exists a k-arc on an elliptic curve over GF(q); e.g. the elliptic curve y^2 = x^3 + x + 1 over GF(5) contains a 6-arc consisting of the points {(0,1), (3,1), (4,2), (4,3), (0,4), (3,4)}. - Robin Visser, Aug 26 2023
REFERENCES
J. W. P. Hirschfeld, Linear codes and algebraic curves, pp. 35-53 of F. C. Holroyd and R. J. Wilson, editors, Geometrical Combinatorics. Pitman, Boston, 1984. See M_q(1) on page 51.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Robin Visser, Table of n, a(n) for n = 1..10000
J. W. P. Hirschfeld, G. Korchmáros, and F. Torres, Algebraic curves over a finite field, Princeton Ser. Appl. Math., Princeton University Press, Princeton, NJ, 2008.
Mathematica Information Center, Item 5175, for full code.
Ed Pegg Jr, Integer Complexity.
FORMULA
a(n) = floor(A005523(n)/2) [Hirschfeld]. - Robin Visser, Aug 26 2023
EXAMPLE
For n = 4, the elliptic curve E : y^2 = x^3 + 3*x over GF(5) has 10 rational points. As this is the maximal number of rational points an elliptic curve over GF(5) can have, this implies a(4) = 10/2 = 5. - Robin Visser, Aug 26 2023
PROG
(Sage)
for q in range(1, 1000):
if Integer(q).is_prime_power():
p = Integer(q).prime_factors()[0]
if (floor(2*sqrt(q))%p != 0) or (Integer(q).is_square()) or (q==p):
print(floor((q + 1 + floor(2*sqrt(q)))/2))
else:
print(floor((q + floor(2*sqrt(q)))/2)) # Robin Visser, Aug 26 2023
CROSSREFS
KEYWORD
nonn
AUTHOR
EXTENSIONS
New name and more terms from Robin Visser, Aug 26 2023
STATUS
approved