login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A004985
a(n) = (2^n/n!)*Product_{k=0..n-1} (4*k + 5).
1
1, 10, 90, 780, 6630, 55692, 464100, 3845400, 31724550, 260846300, 2138939660, 17500415400, 142920059100, 1165348174200, 9489263704200, 77179344794160, 627082176452550, 5090431785320700, 41289057814267900, 334658679126171400, 2710735300921988340, 21944047674130381800
OFFSET
0,2
LINKS
FORMULA
G.f.: (1 - 8*x)^(-5/4).
a(n) ~ 4*Gamma(1/4)^-1*n^(1/4)*2^(3*n)*{1 + 5/32*n^-1 - ...}
a(n) = 8^n*binomial(1/4 + n, 1/4).
E.g.f.: is the hypergeometric function of type 1F1, in Maple notation hypergeom([5/4], [1], 8*x). - Karol A. Penson, Dec 20 2015
D-finite with recurrence: n*a(n) +2*(-4*n-1)*a(n-1)=0. - R. J. Mathar, Jan 16 2020
MAPLE
a:= n-> (2^n/n!)*mul(4*k+5, k=0..n-1); seq(a(n), n=0..25); # G. C. Greubel, Aug 22 2019
MATHEMATICA
Table[2^n/n! Product[4k+5, {k, 0, n-1}], {n, 0, 25}] (* Harvey P. Dale, Apr 15 2019 *)
Table[8^n*Pochhammer[5/4, n]/n!, {n, 0, 25}] (* G. C. Greubel, Aug 22 2019 *)
PROG
(PARI) a(n)=2^n/n!*prod(k=0, n-1, 4*k+5)
for(n=0, 21, print(a(n)))
(Magma) [1] cat [2^n*&*[4*k+5: k in [0..n-1]]/Factorial(n): n in [1..25]]; // G. C. Greubel, Aug 22 2019
(Sage) [8^n*rising_factorial(5/4, n)/factorial(n) for n in (0..25)] # G. C. Greubel, Aug 22 2019
(GAP) List([0..25], n-> 2^n*Product([0..n-1], k-> 4*k+5)/Factorial(n) ); # G. C. Greubel, Aug 22 2019
CROSSREFS
Sequence in context: A162756 A331323 A199940 * A276020 A164552 A057086
KEYWORD
nonn,easy
AUTHOR
Joe Keane (jgk(AT)jgk.org)
EXTENSIONS
More terms from Rick L. Shepherd, Mar 03 2002
Terms a(20) onward added by G. C. Greubel, Aug 22 2019
STATUS
approved