login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A276020
n^2 * a(n) = 2*(17*n^2-21*n+9) * a(n-1) - 4*(112*n^2-280*n+197) * a(n-2) + 40*(68*n^2-256*n+251) * a(n-3) - 1600*(2*n-5)^2 * a(n-4), with a(0)=1, a(1)=10, a(2)=90, a(3)=780.
2
1, 10, 90, 780, 6630, 55820, 469220, 3967000, 33951750, 295553500, 2622492940, 23701797800, 217528135900, 2018704327800, 18862262001800, 176834576018480, 1659586559786950, 15575074941839100, 146164364053448700, 1372547571923176200, 12910383388613518580, 121770360957324308200, 1152648798132152849400
OFFSET
0,2
LINKS
Robert S. Maier, On Rationally Parametrized Modular Equations, arXiv:math/0611041 [math.NT], 2006.
FORMULA
n^2*a(n) = 2*(17*n^2-21*n+9)*a(n-1) - 4*(112*n^2-280*n+197)*a(n-2) + 40*(68*n^2-256*n+251)*a(n-3) - 1600*(2*n-5)^2 *a(n-4), with a(0)=1, a(1)=10, a(2)=90, a(3)=780.
0 = 4*x*(x+4)*(x+5)*(x^2+8*x+20)*y'' + 4*(4*x^4+55*x^3+280*x^2+600*x+400)*y' + (9*x^3+95*x^2+340*x+400)*y, where y(x) = A(x/-40).
a(n) ~ 2^n * 5^(n+5/4) / (Pi*n). - Vaclav Kotesovec, Aug 25 2016
MATHEMATICA
a[0] = 1; a[1] = 10; a[2] = 90; a[3] = 780; a[n_] := a[n] = (40(68n^2 - 256n + 251)a[n-3] - 4(112n^2 - 280n + 197)a[n-2] + 2(17n^2 - 21n + 9)a[n-1] - 1600(2n - 5)^2 a[n-4])/n^2;
Table[a[n], {n, 0, 22}] (* Jean-François Alcover, Oct 19 2018 *)
PROG
(PARI)
seq(N) = {
my(a = vector(N));
a[1] = 10; a[2] = 90; a[3] = 780; a[4] = 6630;
for (n = 5, N,
my(t1 = 2*(17*n^2 - 21*n + 9)*a[n-1] - 4*(112*n^2 - 280*n + 197)*a[n-2],
t2 = 40*(68*n^2 - 256*n + 251) * a[n-3] - 1600*(2*n-5)^2 *a[n-4]);
a[n] = (t1 + t2)/n^2);
concat(1, a);
};
seq(22)
CROSSREFS
Sequence in context: A331323 A199940 A004985 * A164552 A057086 A092420
KEYWORD
nonn
AUTHOR
Gheorghe Coserea, Aug 23 2016
STATUS
approved