login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = (2^n/n!)*Product_{k=0..n-1} (4*k + 5).
1

%I #32 Sep 08 2022 08:44:33

%S 1,10,90,780,6630,55692,464100,3845400,31724550,260846300,2138939660,

%T 17500415400,142920059100,1165348174200,9489263704200,77179344794160,

%U 627082176452550,5090431785320700,41289057814267900,334658679126171400,2710735300921988340,21944047674130381800

%N a(n) = (2^n/n!)*Product_{k=0..n-1} (4*k + 5).

%H G. C. Greubel, <a href="/A004985/b004985.txt">Table of n, a(n) for n = 0..1000</a>

%F G.f.: (1 - 8*x)^(-5/4).

%F a(n) ~ 4*Gamma(1/4)^-1*n^(1/4)*2^(3*n)*{1 + 5/32*n^-1 - ...}

%F a(n) = 8^n*binomial(1/4 + n, 1/4).

%F E.g.f.: is the hypergeometric function of type 1F1, in Maple notation hypergeom([5/4], [1], 8*x). - _Karol A. Penson_, Dec 20 2015

%F D-finite with recurrence: n*a(n) +2*(-4*n-1)*a(n-1)=0. - _R. J. Mathar_, Jan 16 2020

%p a:= n-> (2^n/n!)*mul(4*k+5, k=0..n-1); seq(a(n), n=0..25); # _G. C. Greubel_, Aug 22 2019

%t Table[2^n/n! Product[4k+5,{k,0,n-1}],{n,0,25}] (* _Harvey P. Dale_, Apr 15 2019 *)

%t Table[8^n*Pochhammer[5/4, n]/n!, {n,0,25}] (* _G. C. Greubel_, Aug 22 2019 *)

%o (PARI) a(n)=2^n/n!*prod(k=0,n-1,4*k+5)

%o for(n=0,21,print(a(n)))

%o (Magma) [1] cat [2^n*&*[4*k+5: k in [0..n-1]]/Factorial(n): n in [1..25]]; // _G. C. Greubel_, Aug 22 2019

%o (Sage) [8^n*rising_factorial(5/4, n)/factorial(n) for n in (0..25)] # _G. C. Greubel_, Aug 22 2019

%o (GAP) List([0..25], n-> 2^n*Product([0..n-1], k-> 4*k+5)/Factorial(n) ); # _G. C. Greubel_, Aug 22 2019

%K nonn,easy

%O 0,2

%A Joe Keane (jgk(AT)jgk.org)

%E More terms from _Rick L. Shepherd_, Mar 03 2002

%E Terms a(20) onward added by _G. C. Greubel_, Aug 22 2019