login
A003806
Order of universal Chevalley group A_8 (q), q = prime power.
0
699612310033197642547200, 124190524600592082795473760093457612800, 1341733356588640095264385107865053233298800640000, 78616578542037111790447631835937500000000000000000000000, 39573939034651534226739680064959446854442420750012276098670264320000
OFFSET
1,1
REFERENCES
J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker and R. A. Wilson, ATLAS of Finite Groups. Oxford Univ. Press, 1985 [for best online version see https://oeis.org/wiki/Welcome#Links_to_Other_Sites], p. xvi.
H. S. M. Coxeter and W. O. J. Moser, Generators and Relations for Discrete Groups, 4th ed., Springer-Verlag, NY, reprinted 1984, p. 131.
FORMULA
a(n) = A(A000961(n+1),8) where A(q,n) is defined in A003787. - Sean A. Irvine, Sep 18 2015
MATHEMATICA
f[m_, n_] := m^(n (n + 1)/2) Product[m^k - 1, {k, 2, n + 1}]; f[#, 8] & /@ Select[Range[2, 7], PrimePowerQ] (* Michael De Vlieger, Sep 18 2015 *)
CROSSREFS
Sequence in context: A280346 A217404 A003813 * A257374 A217422 A328860
KEYWORD
nonn,easy
EXTENSIONS
a(5) from Sean A. Irvine, Sep 18 2015
STATUS
approved