%I #17 Jun 14 2024 22:31:08
%S 699612310033197642547200,124190524600592082795473760093457612800,
%T 1341733356588640095264385107865053233298800640000,
%U 78616578542037111790447631835937500000000000000000000000,39573939034651534226739680064959446854442420750012276098670264320000
%N Order of universal Chevalley group A_8 (q), q = prime power.
%D J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker and R. A. Wilson, ATLAS of Finite Groups. Oxford Univ. Press, 1985 [for best online version see https://oeis.org/wiki/Welcome#Links_to_Other_Sites], p. xvi.
%D H. S. M. Coxeter and W. O. J. Moser, Generators and Relations for Discrete Groups, 4th ed., Springer-Verlag, NY, reprinted 1984, p. 131.
%F a(n) = A(A000961(n+1),8) where A(q,n) is defined in A003787. - _Sean A. Irvine_, Sep 18 2015
%t f[m_, n_] := m^(n (n + 1)/2) Product[m^k - 1, {k, 2, n + 1}]; f[#, 8] & /@ Select[Range[2, 7], PrimePowerQ] (* _Michael De Vlieger_, Sep 18 2015 *)
%K nonn,easy
%O 1,1
%A _N. J. A. Sloane_
%E a(5) from _Sean A. Irvine_, Sep 18 2015