|
|
A003788
|
|
Order of universal Chevalley group A_n (4).
|
|
1
|
|
|
1, 60, 60480, 987033600, 258492255436800, 1083930404878024704000, 72736898347485916060188672000, 78099458182389588115529148326215680000, 1341733356588640095264385107865053233298800640000
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,2
|
|
REFERENCES
|
J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker and R. A. Wilson, ATLAS of Finite Groups. Oxford Univ. Press, 1985, p. xvi.
H. S. M. Coxeter and W. O. J. Moser, Generators and Relations for Discrete Groups, 4th ed., Springer-Verlag, NY, reprinted 1984, p. 131.
|
|
LINKS
|
Table of n, a(n) for n=0..8.
Geoffrey Critzer, Combinatorics of Vector Spaces over Finite Fields, Master's thesis, Emporia State University, 2018.
|
|
FORMULA
|
Numbers so far appear to equal A053291(n)/3. - Ralf Stephan, Mar 30 2004
a(n) = A(4,n) where A(q,n) is defined in A003787. - Sean A. Irvine, Sep 18 2015
|
|
MATHEMATICA
|
f[m_, n_] := m^(n (n + 1)/2) Product[m^k - 1, {k, 2, n + 1}];
f[4, #] & /@ Range[0, 8] (* Michael De Vlieger, Sep 18 2015 *)
|
|
PROG
|
(MAGMA) [&*[(4^n - 4^k): k in [0..n-1]]/3: n in [1..8]]; // Vincenzo Librandi, Sep 19 2015
|
|
CROSSREFS
|
Sequence in context: A221936 A225990 A185560 * A222019 A123378 A221692
Adjacent sequences: A003785 A003786 A003787 * A003789 A003790 A003791
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
N. J. A. Sloane
|
|
EXTENSIONS
|
One more term from Sean A. Irvine, Sep 18 2015
|
|
STATUS
|
approved
|
|
|
|