The OEIS is supported by the many generous donors to the OEIS Foundation.

 Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 60th year, we have over 367,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”). Other ways to Give
 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A003785 Coefficients of Jacobi cusp form of index 1 and weight 12. 21
 1, 10, 0, 0, -88, -132, 0, 0, 1275, 736, 0, 0, -8040, -2880, 0, 0, 24035, 13080, 0, 0, -14136, -54120, 0, 0, -128844, 115456, 0, 0, 389520, 38016, 0, 0, -256410, -697950, 0, 0, -806520, 963160, 0, 0, 1892363, 938400, 0, 0, -1227600, -2309120, 0, 0, -813450, -2813096, 0, 0 (list; graph; refs; listen; history; text; internal format)
 OFFSET 3,2 REFERENCES M. Eichler and D. Zagier, The Theory of Jacobi Forms, Birkhauser, 1985, p. 141. LINKS Table of n, a(n) for n=3..54. FORMULA (theta_3(z)^4+(theta_2(z)^4)/4)*eta(4z)^18*theta_4(z). - Kok Seng Chua (chuaks(AT)ihpc.nus.edu.sg), May 11 2000 a(4*n+1) = a(4*n+2) = 0. EXAMPLE q^3 + 10*q^4 - 88*q^7 - 132*q^8 + 1275*q^11 + 736*q^12 - 8040*q^15 - ... PROG (PARI) {a(n) = local(A, A1); if( n<3, 0, n -= 3; A = x * O(x^n); A1 = (eta(x^2 + A)^3 / eta(x + A) / eta(x^4 + A)^2)^4 ; polcoeff( (A1 + 4 * x / A1) * eta(x^2 + A)^7 * eta(x^4 + A)^18 / eta(x + A)^2, n))} /* Michael Somos, Oct 24 2007 */ CROSSREFS Cf. A003784. Sequence in context: A341809 A340947 A306934 * A287711 A287783 A288394 Adjacent sequences: A003782 A003783 A003784 * A003786 A003787 A003788 KEYWORD sign AUTHOR N. J. A. Sloane, Mar 15 1996 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 11 10:53 EST 2023. Contains 367722 sequences. (Running on oeis4.)