OFFSET
1,1
COMMENTS
These integers yield norm-Euclidean real quadratic fields. There are other positive integers, e.g., D=14 or D=69, for which Q[sqrt(D)] is Euclidean, but for a Euclidean function different from the field norm.
For further references see sequence A048981 which also lists negative D corresponding to (complex) norm-Euclidean fields. - M. F. Hasler, Jan 26 2014
REFERENCES
H. Cohn, A Second Course in Number Theory, Wiley, NY, 1962, p. 109.
G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers. 3rd ed., Oxford Univ. Press, 1954, p. 213.
K. Inkeri, Über den Euklidischen Algorithmus in quadratischen Zahlkörpern. Ann. Acad. Sci. Fennicae Ser. A. 1. Math.-Phys., No. 41, 1-35, 1947. [Incorrectly gives 97 as a member of this sequence.]
W. J. LeVeque, Topics in Number Theory. Addison-Wesley, Reading, MA, 2 vols., 1956, Vol. 2, p. 57.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
H. M. Stark, An Introduction to Number Theory. Markham, Chicago, 1970, p. 294.
LINKS
H. Chatland and H. Davenport, Euclid's algorithm in real quadratic fields, Canadian J. Math. 2, (1950), 289-296.
S. R. Finch, Class number theory [Cached copy, with permission of the author]
Pierre Samuel, Unique factorization, Amer. Math. Monthly 75 (1968), 945-952.
FORMULA
a(n) = A048981(n+5). - M. F. Hasler, Jan 26 2014
PROG
(PARI) is_A003174(n) = bittest(9444877083272958060780, n) \\ M. F. Hasler, Jan 26 2014
CROSSREFS
KEYWORD
fini,nonn,full,nice
AUTHOR
EXTENSIONS
Definition corrected and comment rephrased by M. F. Hasler, Jan 26 2014
Definition corrected by Jonathan Sondow, Oct 19 2015
STATUS
approved