This site is supported by donations to The OEIS Foundation.



(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A002920 Susceptibility series for hexagonal lattice.
(Formerly M4196 N1750)
1, 6, 30, 138, 606, 2586, 10818, 44574, 181542, 732678, 2935218, 11687202, 46296210, 182588850, 717395262, 2809372302, 10969820358 (list; graph; refs; listen; history; text; internal format)



The hexagonal lattice is the familiar 2-dimensional lattice in which each point has 6 neighbors. This is sometimes called the triangular lattice.


C. Domb, Ising model, in Phase Transitions and Critical Phenomena, vol. 3, ed. C. Domb and M. S. Green, Academic Press, 1974; p. 380.

M. E. Fisher and R. J. Burford, Theory of critical point scattering and correlations I: the Ising model, Phys. Rev. 156 (1967), 583-621.

N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).

N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

M. F. Sykes, Some counting theorems in the theory of the Ising problem and the excluded volume problem, J. Math. Phys., 2 (1961), 52-62.

M. F. Sykes, D. G. Gaunt, P. D. Roberts and J. A. Wyles, High temperature series for the susceptibility of the Ising model, I. Two dimensional lattices, J. Phys. A 5 (1972) 624-639.


Table of n, a(n) for n=0..16.

C. Domb, Ising model, Phase Transitions and Critical Phenomena 3 (1974), 257, 380-381, 384-387, 390-391, 412-423. (Annotated scanned copy)

G. Nebe and N. J. A. Sloane, Home page for hexagonal (or triangular) lattice A2


Sequence in context: A081895 A030280 A034545 * A255463 A192208 A001334

Adjacent sequences:  A002917 A002918 A002919 * A002921 A002922 A002923




N. J. A. Sloane.



Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 21 15:27 EDT 2019. Contains 323444 sequences. (Running on oeis4.)