The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A002041 Expansion of x/((1-x)(1-4x^2)(1-5x)). (Formerly M4216 N1759) 1
 1, 6, 35, 180, 921, 4626, 23215, 116160, 581141, 2906046, 14531595, 72659340, 363302161, 1816516266, 9082603175, 45413037720, 227065275981, 1135326467286, 5676632685955, 28383163779300, 141915820294601, 709579102871106, 3547895519947935, 17739477605332080, 88697388049030021 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 REFERENCES N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence). N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). LINKS Vincenzo Librandi, Table of n, a(n) for n = 1..1000 Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009. Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992 G. B. M. Zerr et al., Problem 64, Amer. Math. Monthly, 3 (1896), 244-248. Index entries for linear recurrences with constant coefficients, signature (6,-1,-24,20). FORMULA a(n-2) = (1/252) {3*5^n - 4^[(n+2)/2] - 5*4^[(n+3)/2] + 21}. - Ralf Stephan, Aug 22 2004 MAPLE A002041:=-1/(z-1)/(2*z+1)/(2*z-1)/(5*z-1); # conjectured by Simon Plouffe in his 1992 dissertation MATHEMATICA CoefficientList[Series[x/(1-x)/(1-4x^2)/(1-5x), {x, 1, 30}], x] (* Vincenzo Librandi, Jun 12 2012 *) LinearRecurrence[{6, -1, -24, 20}, {0, 1, 6, 35}, 30] (* Harvey P. Dale, Aug 27 2022 *) CROSSREFS Sequence in context: A333800 A026997 A014337 * A103995 A137628 A254826 Adjacent sequences: A002038 A002039 A002040 * A002042 A002043 A002044 KEYWORD nonn,easy AUTHOR N. J. A. Sloane EXTENSIONS Extended by Vincenzo Librandi, Jun 12 2012 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 7 05:30 EDT 2024. Contains 375008 sequences. (Running on oeis4.)