login
This site is supported by donations to The OEIS Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing.
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A002040 Related to partitions.
(Formerly M1159 N0442)
4
1, 2, 4, 8, 21, 52, 131, 316, 765, 1846, 4494, 10944, 26654, 64798, 157502, 382868, 931028, 2264106, 5505777, 13387880, 32553601, 79156974, 192479838, 468039888, 1138098210, 2767421826, 6729311459, 16363118556, 39788886610, 96751470494 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

REFERENCES

N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).

N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..300

J. M. Gandhi, On numbers related to partitions of a number, Amer. Math. Monthly, 76 (1969), 1033-1036.

Eric Weisstein's World of Mathematics, Ramanujan Theta Functions.

FORMULA

G.f.: 1/(f(q)') where f(-q)=Product_{k>0} (1-q^k) is one of Ramanujan's theta functions. - Michael Somos, Apr 08 2003

a(n) = sum_{k=0..n} (-1)^k*A000041(k)*A002039(n-k). - Mircea Merca, Feb 27 2014

a(n) ~ c * d^n, where d = -1/A143441 = 2.431619934495323994754... and c = 0.623278923942755977756856780504941340332933121682037117752100... - Vaclav Kotesovec, Jun 02 2018

EXAMPLE

G.f. = 1 + 2*x + 4*x^2 + 8*x^3 + 21*x^4 + 52*x^5 + 131*x^6 + 316*x^7 + ...

MATHEMATICA

max = 29; f[q_] := Product[1 - (-q)^k, {k, 1, max + 1}]; CoefficientList[ Series[1/f'[q], {q, 0, max}], q] (* Jean-Fran├žois Alcover, Jun 18 2012, after Michael Somos *)

a[ n_] := If[ n < 0, 0, SeriesCoefficient[ 1 / D[ Normal @ Series[ QPochhammer[ -x], {x, 0, n + 1}], x], {x, 0, n}]]; (* Michael Somos, May 31 2016 *)

PROG

(PARI) {a(n) = polcoeff( 1 / eta( -x + x^2 * O(x^n))', n)};

CROSSREFS

Cf. A002039, A000203, A010815.

Sequence in context: A059731 A001315 A216643 * A162110 A108071 A055876

Adjacent sequences:  A002037 A002038 A002039 * A002041 A002042 A002043

KEYWORD

nonn,easy,nice

AUTHOR

N. J. A. Sloane.

EXTENSIONS

Formula corrected and sequence extended by Michael Somos

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 13 03:41 EST 2019. Contains 329968 sequences. (Running on oeis4.)