login
A001966
v-pile counts for the 4-Wythoff game with i=2.
(Formerly M1739 N0689)
4
2, 7, 13, 18, 23, 28, 34, 39, 44, 49, 54, 60, 65, 70, 75, 81, 86, 91, 96, 102, 107, 112, 117, 123, 128, 133, 138, 143, 149, 154, 159, 164, 170, 175, 180, 185, 191, 196, 201, 206, 212, 217, 222, 227, 233, 238, 243, 248, 253, 259, 264, 269, 274, 280, 285, 290
OFFSET
0,1
COMMENTS
See Connell (1959) for further information.
REFERENCES
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Ian G. Connell, A generalization of Wythoff's game, Canad. Math. Bull. 2 (1959) 181-190
N. J. A. Sloane, Families of Essentially Identical Sequences, Mar 24 2021 (Includes this sequence).
FORMULA
a(n) = floor( (n+1/2)*(3+sqrt 5) ).
A bisection of A001950: a(n) = A001950(2*n+1). - N. J. A. Sloane, Mar 16 2021
a(n) = A001965(n)+4*n+2. - Chai Wah Wu, Aug 25 2022
MATHEMATICA
Table[Floor[(n + 1/2)*(Sqrt[5] + 3)], {n, 0, 100}] (* T. D. Noe, Aug 17 2012 *)
PROG
(Python)
from math import isqrt
def A001966(n): return ((m:=(n<<1)+1)+isqrt(5*m**2)>>1)+m # Chai Wah Wu, Aug 25 2022
CROSSREFS
Cf. A001965 (u-pile), A001950.
Sequence in context: A106911 A019370 A356107 * A209886 A168465 A140562
KEYWORD
nonn,easy
EXTENSIONS
Edited by Hugo Pfoertner, Dec 27 2021
STATUS
approved