

A001966


Wythoff game.
(Formerly M1739 N0689)


3



2, 7, 13, 18, 23, 28, 34, 39, 44, 49, 54, 60, 65, 70, 75, 81, 86, 91, 96, 102, 107, 112, 117, 123, 128, 133, 138, 143, 149, 154, 159, 164, 170, 175, 180, 185, 191, 196, 201, 206, 212, 217, 222, 227, 233, 238, 243, 248, 253, 259, 264, 269, 274, 280, 285, 290
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,1


COMMENTS

vpile counts for the 4Wythoff game, parameter i=2 (Connell).


REFERENCES

N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).


LINKS

T. D. Noe, Table of n, a(n) for n = 0..10000
Ian G. Connell, A generalization of Wythoff's game, Canad. Math. Bull. 2 (1959) 181190


FORMULA

a(n) = floor( (n+1/2)*(3+sqrt 5) ).


MATHEMATICA

Table[Floor[(n + 1/2)*(Sqrt[5] + 3)], {n, 0, 100}] (* T. D. Noe, Aug 17 2012 *)


CROSSREFS

Cf. A001965 (upile).
Sequence in context: A191036 A106911 A019370 * A209886 A168465 A140562
Adjacent sequences: A001963 A001964 A001965 * A001967 A001968 A001969


KEYWORD

nonn,easy


AUTHOR

N. J. A. Sloane.


STATUS

approved



