login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A001814
Coefficient of H_2 when expressing x^{2n} in terms of Hermite polynomials H_m.
(Formerly M4875 N2088)
7
1, 12, 180, 3360, 75600, 1995840, 60540480, 2075673600, 79394515200, 3352212864000, 154872234316800, 7771770303897600, 420970891461120000, 24481076457277440000, 1521324036987955200000, 100610229646136770560000
OFFSET
1,2
COMMENTS
a(n) = A126804(n)/2. - Zerinvary Lajos, Sep 21 2007
REFERENCES
M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 801.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
FORMULA
E.g.f.: x*(1 + 2x)/(1 - 4x)^(5/2).
a(n) = (2*n)!/(2*(n-1)!).
(n!/2)*binomial(2*n,n)*n or n!/2*A005430. - Zerinvary Lajos, Jun 06 2006
MAPLE
with(combinat):for n from 1 to 16 do printf(`%d, `, n!/2*sum(binomial(2*n, n), k=1..n)) od: # Zerinvary Lajos, Mar 13 2007
a:=n->sum((count(Permutation(n*2+2), size=n+1)), j=0..n)/2: seq(a(n), n=0..15); # Zerinvary Lajos, May 03 2007
seq(1/2*mul((n+k), k=1..n), n=0..16); # Zerinvary Lajos, Sep 21 2007
MATHEMATICA
Table[(2*n)!/(2*(n-1)!), {n, 1, 20}] (* Vincenzo Librandi, Nov 22 2011 *)
PROG
(MuPAD) combinat::catalan(n)*binomial(n+1, 2)*n! $ n = 1..16; // Zerinvary Lajos, Feb 15 2007
(Magma) [Factorial(2*n)/(2*Factorial(n-1)): n in [1..20]]; // Vincenzo Librandi, Nov 22 2011
CROSSREFS
a(n) = A048854(n, 1) = A067147(2n, 2).
Cf. A001879.
Cf. A005430.
Sequence in context: A241710 A318245 A051609 * A370750 A327079 A013924
KEYWORD
nonn
EXTENSIONS
More terms and new description from Christian G. Bower, Dec 18 2001
STATUS
approved