OFFSET
1,2
COMMENTS
a(n) = A126804(n)/2. - Zerinvary Lajos, Sep 21 2007
REFERENCES
M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 801.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 1..200
M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
H. E. Salzer, Coefficients for expressing the first thirty powers in terms of the Hermite polynomials, Math. Comp., 3 (1948), 167-169.
FORMULA
E.g.f.: x*(1 + 2x)/(1 - 4x)^(5/2).
a(n) = (2*n)!/(2*(n-1)!).
(n!/2)*binomial(2*n,n)*n or n!/2*A005430. - Zerinvary Lajos, Jun 06 2006
MAPLE
with(combinat):for n from 1 to 16 do printf(`%d, `, n!/2*sum(binomial(2*n, n), k=1..n)) od: # Zerinvary Lajos, Mar 13 2007
a:=n->sum((count(Permutation(n*2+2), size=n+1)), j=0..n)/2: seq(a(n), n=0..15); # Zerinvary Lajos, May 03 2007
seq(1/2*mul((n+k), k=1..n), n=0..16); # Zerinvary Lajos, Sep 21 2007
MATHEMATICA
Table[(2*n)!/(2*(n-1)!), {n, 1, 20}] (* Vincenzo Librandi, Nov 22 2011 *)
PROG
(MuPAD) combinat::catalan(n)*binomial(n+1, 2)*n! $ n = 1..16; // Zerinvary Lajos, Feb 15 2007
(Magma) [Factorial(2*n)/(2*Factorial(n-1)): n in [1..20]]; // Vincenzo Librandi, Nov 22 2011
CROSSREFS
KEYWORD
nonn
AUTHOR
EXTENSIONS
More terms and new description from Christian G. Bower, Dec 18 2001
STATUS
approved