login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Coefficient of H_2 when expressing x^{2n} in terms of Hermite polynomials H_m.
(Formerly M4875 N2088)
7

%I M4875 N2088 #38 Sep 08 2022 08:44:29

%S 1,12,180,3360,75600,1995840,60540480,2075673600,79394515200,

%T 3352212864000,154872234316800,7771770303897600,420970891461120000,

%U 24481076457277440000,1521324036987955200000,100610229646136770560000

%N Coefficient of H_2 when expressing x^{2n} in terms of Hermite polynomials H_m.

%C a(n) = A126804(n)/2. - _Zerinvary Lajos_, Sep 21 2007

%D M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 801.

%D N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).

%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

%H Vincenzo Librandi, <a href="/A001814/b001814.txt">Table of n, a(n) for n = 1..200</a>

%H M. Abramowitz and I. A. Stegun, eds., <a href="http://www.convertit.com/Go/ConvertIt/Reference/AMS55.ASP">Handbook of Mathematical Functions</a>, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].

%H H. E. Salzer, <a href="http://dx.doi.org/10.1090/S0025-5718-1948-0026413-5">Coefficients for expressing the first thirty powers in terms of the Hermite polynomials</a>, Math. Comp., 3 (1948), 167-169.

%H <a href="/index/He#Hermite">Index entries for sequences related to Hermite polynomials</a>

%F E.g.f.: x*(1 + 2x)/(1 - 4x)^(5/2).

%F a(n) = (2*n)!/(2*(n-1)!).

%F (n!/2)*binomial(2*n,n)*n or n!/2*A005430. - _Zerinvary Lajos_, Jun 06 2006

%p with(combinat):for n from 1 to 16 do printf(`%d, `,n!/2*sum(binomial(2*n, n), k=1..n)) od: # _Zerinvary Lajos_, Mar 13 2007

%p a:=n->sum((count(Permutation(n*2+2),size=n+1)),j=0..n)/2: seq(a(n), n=0..15); # _Zerinvary Lajos_, May 03 2007

%p seq(1/2*mul((n+k), k=1..n), n=0..16); # _Zerinvary Lajos_, Sep 21 2007

%t Table[(2*n)!/(2*(n-1)!),{n,1,20}] (* _Vincenzo Librandi_, Nov 22 2011 *)

%o (MuPAD) combinat::catalan(n)*binomial(n+1,2)*n! $ n = 1..16; // _Zerinvary Lajos_, Feb 15 2007

%o (Magma) [Factorial(2*n)/(2*Factorial(n-1)): n in [1..20]]; // _Vincenzo Librandi_, Nov 22 2011

%Y a(n) = A048854(n, 1) = A067147(2n, 2).

%Y Cf. A001879.

%Y Cf. A005430.

%K nonn

%O 1,2

%A _N. J. A. Sloane_

%E More terms and new description from _Christian G. Bower_, Dec 18 2001