OFFSET
1,3
REFERENCES
D. E. Knuth, Art of Computer Programming, Vol. 3, Sect. 5.3.1.
T. A. J. Nicholson, A method for optimizing permutation problems and its industrial applications, pp. 201-217 of D. J. A. Welsh, editor, Combinatorial Mathematics and Its Applications. Academic Press, NY, 1971.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Alois P. Heinz, Table of n, a(n) for n = 1..10000 (first 1000 terms from T. D. Noe)
J.-P. Allouche and J. Shallit, The ring of k-regular sequences, Theoretical Computer Sci., 98 (1992), 163-197.
J.-P. Allouche and J. Shallit, The ring of k-regular sequences, Theoretical Computer Sci., 98 (1992), 163-197.
L. R. Ford, Jr. and S. M. Johnson, A tournament problem, Amer. Math. Monthly, 66 (1959), 387-389.
Eric Weisstein's World of Mathematics, Sorting
FORMULA
a(n) = Sum_{k=1..n} ceiling(log_2 (3k/4)). See also Problem 5.3.1-14 of Knuth.
a(n) = n(z-1)-[(2^(z+2)-3z)/6] where z = [log_2(3n+3)]. - David W. Wilson, Feb 26 2006
MAPLE
Digits := 60: A001768 := proc(n) local k; add( ceil( log(3*k/4)/log(2) ), k=1..n); end;
# second Maple program:
b:= proc(n) option remember; ceil(log[2](3*n/4)) end:
a:= proc(n) option remember; `if`(n<1, 0, a(n-1)+b(n)) end:
seq(a(n), n=1..61); # Alois P. Heinz, Dec 03 2019
MATHEMATICA
Accumulate[Ceiling[Log[2, (3*Range[60])/4]]] (* Harvey P. Dale, Oct 30 2013 *)
PROG
(PARI) a(n)=ceil(log(3/4*n)/log(2)) \\ Charles R Greathouse IV, Nov 04 2011
(Haskell)
a001768 n = n * (z - 1) - (2 ^ (z + 2) - 3 * z) `div` 6
where z = a085423 $ n + 1
-- Reinhard Zumkeller, Mar 16 2013 after David W. Wilson's formula.
CROSSREFS
KEYWORD
nonn,easy,nice
AUTHOR
EXTENSIONS
Name clarified by Li-yao Xia, Nov 18 2015
STATUS
approved