OFFSET
0,1
LINKS
T. D. Noe, Table of n, a(n) for n = 0..1000
Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
FORMULA
Sum_{k>=0} 1/a(k) = Pi/(8*sqrt(3)) = 0.22672492... - Jaume Oliver Lafont, May 30 2010
a(n) = 72*n + a(n-1) with a(0)=5. - Vincenzo Librandi, Nov 12 2010
G.f.: (-5 - 62*x - 5*x^2) / (x-1)^3. - R. J. Mathar, Jan 19 2013
From Amiram Eldar, Feb 19 2023: (Start)
Sum_{n>=0} (-1)^n/a(n) = log(2+sqrt(3))/(4*sqrt(3)).
Product_{n>=0} (1 - 1/a(n)) = 2*cos(sqrt(5)*Pi/6).
Product_{n>=0} (1 + 1/a(n)) = 2*cos(sqrt(3)*Pi/6). (End)
MATHEMATICA
a[n_] := (6*n + 1)*(6*n + 5); Array[a, 40, 0] (* Amiram Eldar, Feb 19 2023 *)
PROG
(PARI) a(n)=(6*n+1)*(6*n+5) \\ Charles R Greathouse IV, Jun 17 2017
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
STATUS
approved