login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A000724
Invertible Boolean functions of n variables.
(Formerly M3175 N1287)
0
1, 3, 196, 3406687200, 2141364232858913975435172249600, 43025354066936633335853878219659247776604712057098163541301459387254457761792000000
OFFSET
1,2
COMMENTS
Equivalence classes of invertible maps from {0,1}^n to {0,1}^n, under action of (C_2)^n on domain and F_n=[S_2]^(S_n) on range. - Sean A. Irvine, Mar 16 2011
Technical report version of Harrison's paper contains incorrect value for a(4). - Sean A. Irvine, Mar 16 2011
REFERENCES
M. A. Harrison, The number of classes of invertible Boolean functions, J. ACM 10 (1963), 25-28.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
FORMULA
a(n) = ((2^n)! + (2^n-1) * (2^(n-1))! * 2^(2^(n-1)) * b(n)) / (n! * 2^(2*n)) where b(n) = n! * Sum_{k=0..floor((n-1)/2)} (2^(n-2*k)-1) / ((n - 2*k)! * k!). - Sean A. Irvine, Aug 20 2017
MATHEMATICA
Table[((2^n)! + (2^n - 1) (2^(n - 1))! 2^(2^(n - 1)) * (n! * Sum[ (2^(n - 2 k) - 1)/((n - 2 k)!*k!), {k, 0, Floor[(n - 1)/2]}]))/(n! 2^(2 n)), {n, 6}] (* Michael De Vlieger, Aug 20 2017 *)
CROSSREFS
Sequence in context: A203749 A093978 A101382 * A309749 A209120 A336250
KEYWORD
nonn
EXTENSIONS
More terms from Sean A. Irvine, Mar 15 2011
STATUS
approved