OFFSET
1,2
COMMENTS
Equivalence classes of invertible maps from {0,1}^n to {0,1}^n, under action of (C_2)^n on domain and F_n=[S_2]^(S_n) on range. - Sean A. Irvine, Mar 16 2011
Technical report version of Harrison's paper contains incorrect value for a(4). - Sean A. Irvine, Mar 16 2011
REFERENCES
M. A. Harrison, The number of classes of invertible Boolean functions, J. ACM 10 (1963), 25-28.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
M. A. Harrison, The number of classes of invertible Boolean functions, J. ACM 10 (1963), 25-28. [Annotated scan of page 27 only]
FORMULA
a(n) = ((2^n)! + (2^n-1) * (2^(n-1))! * 2^(2^(n-1)) * b(n)) / (n! * 2^(2*n)) where b(n) = n! * Sum_{k=0..floor((n-1)/2)} (2^(n-2*k)-1) / ((n - 2*k)! * k!). - Sean A. Irvine, Aug 20 2017
MATHEMATICA
Table[((2^n)! + (2^n - 1) (2^(n - 1))! 2^(2^(n - 1)) * (n! * Sum[ (2^(n - 2 k) - 1)/((n - 2 k)!*k!), {k, 0, Floor[(n - 1)/2]}]))/(n! 2^(2 n)), {n, 6}] (* Michael De Vlieger, Aug 20 2017 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
EXTENSIONS
More terms from Sean A. Irvine, Mar 15 2011
STATUS
approved