login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A000662
Number of relations with 3 arguments on n nodes.
(Formerly M2180 N0872)
7
2, 136, 22377984, 768614354122719232, 354460798875983863749270670915141632, 146267071761884981524915186989628577728537526896649216991428608
OFFSET
1,1
REFERENCES
F. Bergeron, G. Labelle and P. Leroux, Combinatorial Species and Tree-Like Structures, Cambridge, 1998, p. 76 (2.2.31)
W. Oberschelp, Kombinatorische Anzahlbestimmungen in Relationen, Math. Ann., 174 (1967), 53-78.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
P. J. Cameron, Sequences realized by oligomorphic permutation groups, J. Integ. Seqs. Vol. 3 (2000), #00.1.5.
W. Oberschelp, Strukturzahlen in endlichen Relationssystemen, in Contributions to Mathematical Logic (Proceedings 1966 Hanover Colloquium), pp. 199-213, North-Holland Publ., Amsterdam, 1968. [Annotated scanned copy]
FORMULA
a(n) = Sum_{1*s_1+2*s_2+...=n} (fixA[s_1, s_2,...]/(1^s_1*s_1!*2^s_2*s_2!*...)) where fixA[s_1, s_2, ...] = 2^Sum_{i, j, k>=1} (i*j*k*s_i*s_j*s_k/lcm(i, j, k)). - Christian G. Bower, Jan 06 2004
PROG
(Python)
from itertools import product
from math import factorial, prod, lcm
from fractions import Fraction
from sympy.utilities.iterables import partitions
def A000662(n): return int(sum(Fraction(1<<sum(r*s*t//lcm(r, s, t)*p[r]*p[s]*p[t] for r, s, t in product(p.keys(), repeat=3)), prod(q**p[q]*factorial(p[q]) for q in p)) for p in partitions(n))) # Chai Wah Wu, Jul 02 2024
CROSSREFS
KEYWORD
nonn,nice
STATUS
approved