This site is supported by donations to The OEIS Foundation.



(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A000662 Relations with 3 arguments on n nodes.
(Formerly M2180 N0872)

%I M2180 N0872

%S 2,136,22377984,768614354122719232,

%T 354460798875983863749270670915141632,

%U 146267071761884981524915186989628577728537526896649216991428608

%N Relations with 3 arguments on n nodes.

%D F. Bergeron, G. Labelle and P. Leroux, Combinatorial Species and Tree-Like Structures, Cambridge, 1998, p. 76 (2.2.31)

%D W. Oberschelp, Kombinatorische Anzahlbestimmungen in Relationen, Math. Ann., 174 (1967), 53-78.

%D N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).

%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

%H Alois P. Heinz, <a href="/A000662/b000662.txt">Table of n, a(n) for n = 1..15</a>

%H P. J. Cameron, <a href="http://www.cs.uwaterloo.ca/journals/JIS/index.html">Sequences realized by oligomorphic permutation groups</a>, J. Integ. Seqs. Vol. 3 (2000), #00.1.5.

%H W. Oberschelp, <a href="/A000662/a000662.pdf"> Strukturzahlen in endlichen Relationssystemen</a>, in Contributions to Mathematical Logic (Proceedings 1966 Hanover Colloquium), pp. 199-213, North-Holland Publ., Amsterdam, 1968. [Annotated scanned copy]

%F a(n) = sum_{1*s_1+2*s_2+...=n} (fix A[s_1, s_2,...]/(1^s_1*s_1!*2^s_2*s_2!*...)) where fix A[s_1, s_2, ...] = 2^sum_{i, j, k>=1} (i*j*k*s_i*s_j*s_k/lcm(i, j, k)).

%Y Cf. A000595, A001377, A051241.

%K nonn,nice

%O 1,1

%A _N. J. A. Sloane_.

%E Formula from _Christian G. Bower_, Jan 06 2004

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 18 01:20 EST 2018. Contains 317279 sequences. (Running on oeis4.)