This site is supported by donations to The OEIS Foundation.

# Partition function

The partition function
 p (n)
gives the number of partitions of a nonnegative integer
 n
into positive integers. (There is one partition of zero into positive integers, i.e. the empty partition, since the empty sum is defined as 0.)

### Table of partition function approximations

Note that
 p (n) = F (n + 1), 0   ≤   n   ≤   4
, where
 F (n)
is the
 n
th Fibonacci number. For the Hardy–Ramanujan asymptotic approximation,
 [·]
is the nearest integer function.
Partition function approximations

 n

 p (n),

 n   ≥   0
.
Hardy–Ramanujan
asymptotic approximation
HR (n) =
 1 4 n2√  3
exp  π
2
 2 n 3

 HR (n)  −  p (n),

 n   ≥   1
.
A000041
 ​(n),

 n   ≥   0
.
A190840
 (n),

 n   ≥   1
.
A035949
 (n  −  3),

 n   ≥   4
.
< 0 0
0 1
1 1 2 1
2 2 3 1
3 3 4 1
4 5 6 1 0
5 7 9 2 1
6 11 13 2 1
7 15 18 3 2
8 22 26 4 2
9 30 35 5 4
10 42 48 6 4
11 56 65 9 7
12 77 87 10 8
13 101 115 14 12
14 135 152 17 14
15 176 199 23 20
16 231 258 27 23
17 297 333 36 32
18 385 427 42 39
19 490 545 55 51
20 627 692 65 61
21 792 875 83 80
22 1002 1102 100 95
23 1255 1381 126 122
24 1575 1725 150 146
25 1958 2145 187 183
26 2436 2659 223 219
27 3010 3285 275 273
28 3718 4046 328 324
29 4565 4967 402 399
30 5604 6080 476 475
31 6842 7423 581 578
32 8349 9037 688 685
33 10143 10974 831 830
34 12310 13293 983 979
35 14883 16065 1182 1177
36 17977 19370 1393 1387
37 21637 23304 1667 1655
38 26015 27977 1962 1945
39 31185 33519 2334 2311
40 37338 40080 2742 2705
41 44583 47833 3250 3198
42 53174 56981 3807 3737
43 63261 67757 4496 4396
44 75175 80431 5256 5121
45 89134 95316 6182 6003
46 105558 112771 7213 6973
47 124754 133211 8457 8143
48 147273 157115 9842 9439
49 173525 185031 11506 10981
50 204226 217590 13364 12697
The following table (compiled in OpenOffice.org Calc, wich has 15 digits max precision, implying that the last digit or two of 14 or 15 digits numbers is not reliable) compares two asymptotic approximations of
 p (n)
, where the first one is the Hardy–Ramanujan asymptotic approximation. (I got the ROUND( EXP(PI()*SQRT(2*n/3)) / (4*(n+(1/2)*(LOG(n))^3)*SQRT(3)) ) (also asymptotic) approximation empirically. If both asymptotic approximations are always overestimates of
 p (n)
, then HR2(n) is always a better approximation than HR(n), since HR2(n) is always less than HR(n). Thus arises the question: are HR(n) and HR2(n) always overstimates of
 p (n)
? — Daniel Forgues 20:39, 31 July 2011 (UTC))
  n	               p(n)	              HR(n)	     HR(n) – p(n)	             HR2(n)	  HR2(n) – p(n)     (HR2(n) – p(n))
A000041 	    Hardy-Ramanujan                      (Modified) Hardy-Ramanujan                                       /
asymptotic                               (also) asymptotic                          (HR(n) – p(n))
approximation of p(n)                           approximation of p(n)

ROUND( EXP(PI()*SQRT(2*n/3))                    ROUND( EXP(PI()*SQRT(2*n/3))
/                                               /
(4*(n)*SQRT(3)) )              (4*(n+(1/2)*(LOG(n))^3)*SQRT(3)) )

5	                  7	                  9	                2	                  9	              2                   1
10	                 42	                 48	                6	                 46	              4
15	                176	                199	               23	                188	             12
20	                627	                692	               65	                656	             29
25	              1,958	              2,145	              187	              2,034	             76     0.4064171122994
30	              5,604	              6,080	              476	              5,770	            166
35	             14,883	             16,065	            1,182	             15,262	            379
40	             37,338	             40,080	            2,742	             38,121	            783
45	             89,134	             95,316	            6,182	             90,759	          1,625
50	            204,226	            217,590	           13,364	            207,419	          3,193     0.2389254714157
55	            451,276	            479,431	           28,155	            457,506	          6,230
60	            966,467	          1,024,004	           57,537	            978,175	         11,708
65	          2,012,558	          2,127,604	          115,046	          2,034,361	         21,803
70	          4,087,968	          4,312,670	          224,702	          4,127,481	         39,513
75	          8,118,264	          8,549,010	          430,746	          8,189,102	         70,838     0.1644542259243
80	         15,796,476	         16,606,782	          810,306	         15,920,936	        124,460
85	         30,167,357	         31,667,409	        1,500,052	         30,383,686	        216,329
90	         56,634,173	         59,367,760	        2,733,587	         57,004,184	        370,011
95	        104,651,419	        109,564,225	        4,912,806	        105,277,945	        626,526
100	        190,569,292	        199,280,893	        8,711,601	        191,616,244	      1,046,952     0.1201790577874
105	        342,325,709	        357,586,938	       15,261,229	        344,058,910	      1,733,201
110	        607,163,746	        633,589,186	       26,425,440	        610,001,367	      2,837,621
115	      1,064,144,451	      1,109,412,780	       45,268,329	      1,068,750,525	      4,606,074
120	      1,844,349,560	      1,921,105,572	       76,756,012	      1,851,755,110	      7,405,550
125	      3,163,127,352	      3,292,035,176	      128,907,824	      3,174,941,068	     11,813,716     0.0916446778280
130	      5,371,315,400	      5,585,841,896	      214,526,496	      5,390,004,417	     18,689,017
135	      9,035,836,076	      9,389,797,022	      353,960,946	      9,065,191,305	     29,355,229
140	     15,065,878,135	     15,645,130,511	      579,252,376	     15,111,647,413	     45,769,278
145	     24,908,858,009	     25,849,469,513	      940,611,504	     24,979,755,750	     70,897,741
150	     40,853,235,313	     42,369,336,269	    1,516,100,956	     40,962,334,140	    109,098,827     0.0719601333725
155	     66,493,182,097	     68,919,680,135	    2,426,498,038	     66,660,068,881	    166,886,784
160	    107,438,159,466	    111,295,547,185	    3,857,387,719	    107,691,928,166	    253,768,700
165	    172,389,800,255	    178,482,384,132	    6,092,583,877	    172,773,583,796	    383,783,541
170	    274,768,617,130	    284,332,114,132	    9,563,497,002	    275,345,904,405	    577,287,275
175	    435,157,697,830	    450,080,578,578	   14,922,880,748	    436,021,721,915	    864,024,085     0.0578992822894
180	    684,957,390,936	    708,110,435,576	   23,153,044,640	    686,244,237,116	  1,286,846,180
185	  1,071,823,774,337	  1,107,549,520,159	   35,725,745,822	  1,073,731,572,223	  1,907,797,886
190	  1,667,727,404,093	  1,722,562,621,633	   54,835,217,540	  1,670,543,118,819	  2,815,714,726
195	  2,580,840,212,973	  2,664,579,377,303	   83,739,164,330	  2,584,978,391,028	  4,138,178,055
200	  3,972,999,029,388	  4,100,251,432,188	  127,252,402,800	  3,979,055,824,394	  6,056,795,006     0.0475967044451
205	  6,085,253,859,260	  6,277,716,787,260	  192,462,928,000	  6,094,084,357,824	  8,830,498,564
210	  9,275,102,575,355	  9,564,864,314,565	  289,761,739,210	  9,287,928,415,566	 12,825,840,211
215	 14,070,545,699,287	 14,504,870,558,863	  434,324,859,576	 14,089,107,769,612	 18,562,070,325
220	 21,248,279,009,367	 21,896,510,200,516	  648,231,191,149	 21,275,049,463,813	 26,770,454,446
225	 31,946,390,696,157	 32,909,878,835,929	  963,488,139,772	 31,984,871,555,578	 38,480,859,421     0.0399391106465
230	 47,826,239,745,920	 49,252,568,636,892	1,426,328,890,972	 47,881,376,419,261	 55,136,673,341
235	 71,304,185,514,919	 73,407,495,709,204	2,103,310,194,285	 71,382,945,468,515	 78,759,953,596
240	105,882,246,722,733	108,972,168,902,833	3,089,922,180,100	105,994,418,678,409	112,171,955,676
245	156,618,412,527,946	161,141,141,284,870	4,522,728,756,924	156,777,718,615,992	159,306,088,046
250	230,793,554,364,681	237,389,967,288,174	6,596,412,923,493	231,019,181,853,355	225,627,488,674     0.0342045731962


### Table of related formulae and values

Partition function related formulae and values
 n
 p (n)

A000041
Differences
 p (n)  −

 p (n  −  1) =

 p (2, n),

 n   ≥   1

A002865
Partial sums
 m ∑ n  = 0

p (n)

A000070
Partial sums of reciprocals
 m ∑ n  = 0

 1 p (n)
< 0 0 0 0
0 1 1 1
1 1 0 2
2 2 1 4
3 3 1 7
4 5 2 12
5 7 2 19
6 11 4 30
7 15 4 45
8 22 7 67
9 30 8 97
10 42 12 139
11 56 14 195
12 77 21 272
13 101 24 373
14 135 34 508
15 176 41 684
16 231 55 915
17 297 66 1212
18 385 88 1597
19 490 105 2087
20 627 137 2714
21 792 165 3506
22 1002 210 4508
23 1255 253 5763
24 1575 320 7338
25 1958 383 9296
26 2436 478 11732
27 3010 574 14742
28 3718 708 18460
29 4565 847 23025
30 5604 1039 28629
31 6842 1238 35471
32 8349 1507 43820
33 10143 1794 53963
34 12310 2167 66273
35 14883 2573 81156
36 17977 3094 99133
37 21637 3660 120770
38 26015 4378 146785
39 31185 5170 177970
40 37338 6153 215308
41 44583 7245 259891
42 53174 8591 313065
43 63261 10087 376326
44 75175 11914 451501
45 89134 13959 540635
46 105558 16424 646193
47 124754 19196 770947
48 147273 22519 918220
49 173525 26252 1091745
50 204226 30701 1295971

### Generating function of the partition function

The generating function of
 p (n)
is the reciprocal of Euler’s function
${\displaystyle G_{\{p(n)\}}(x)=\sum _{n=0}^{\infty }p(n)x^{n}=\prod _{k=1}^{\infty }\left({\frac {1}{1-x^{k}}}\right)={\frac {1}{\prod _{k=1}^{\infty }(1-x^{k})}}.}$

### Asymptotic behavior of the partition function

An asymptotic formula, first obtained by G. H. Hardy and Ramanujan in 1918 and independently by J. V. Uspensky in 1920, for
 p (n)
is given by
${\displaystyle p(n)\sim {\frac {1}{4n{\sqrt {3}}}}~e^{\pi {\sqrt {\frac {2n}{3}}}}={\frac {1}{8n\sin({\frac {\pi }{3}})}}~e^{{\frac {\pi }{3}}\sin({\frac {\pi }{3}}){\sqrt {8n}}}\,}$
where
 e π
is Gelfond’s constant.

### Partition function formula

The partition function
 p (n)
, is given by[1]
${\displaystyle p(n)={\frac {1}{\pi {\sqrt {2}}}}\sum _{k=1}^{\infty }A_{k}(n)~k^{\frac {1}{2}}{\Bigg [}{\frac {d}{dx}}{\frac {\sinh {\bigg (}{\frac {\pi }{k}}{\big (}{\frac {2}{3}}{\big )}^{\frac {1}{2}}{\big (}x-{\frac {1}{24}}{\big )}^{\frac {1}{2}}{\bigg )}}{{\big (}x-{\frac {1}{24}}{\big )}^{\frac {1}{2}}}}{\Bigg ]}_{x=n},\,}$
where
 Ak (n)
is an explicitly given finite sum of 24th roots of unity. Note that
 p (n) = 0
when
 n < 0
since a negative integer is not the sum of positive integers, and
 p (0) = 1
since the empty partition gives the empty sum, defined as the additive identity, i.e. 0.

### Partition function recurrence

Euler’s pentagonal number theorem begets a finite (since
 p (n) = 0
for
 n < 0
) recursive formula for the partition function
${\displaystyle p(n)=\sum _{j=1}^{\infty }(-1)^{j-1}[p(n-q_{j})+p(n-q_{-j})]=p(n-1)+p(n-2)-p(n-5)-p(n-7)+p(n-12)+p(n-15)-\cdots \,}$
where
qj =
 j (3j  −  1) 2
, j ∈ ℤ,
are the generalized pentagonal numbers, with
 j
going through the integer sequence (A001057)
{0, 1, −1, 2, −2, 3, −3, 4, − 4, 5, −5, 6, − 6, 7, −7, 8, −8, 9, − 9, 10, −10, 11, −11, 12, −12, 13, −13, 14, −14, 15, −15, 16, −16, 17, −17, 18, −18, 19, −19, 20, −20, 21, −21, 22, −22, 23, −23, 24, −24, 25, −25, 26, −26, ...}
giving the sequence of generalized pentagonal numbers
 qj
(A001318)
{0, 1, 2, 5, 7, 12, 15, 22, 26, 35, 40, 51, 57, 70, 77, 92, 100, 117, 126, 145, 155, 176, 187, 210, 222, 247, 260, 287, 301, 330, 345, 376, 392, 425, 442, 477, 495, 532, 551, 590, 610, 651, 672, 715, ...}
The recurrence may be expressed with explicit finite bounds for the summation indexes
 j
${\displaystyle p(n)=\sum _{j=1}^{{\big \lfloor }{\tfrac {1+{\sqrt {1+24n}}}{6}}{\big \rfloor }}(-1)^{j-1}~p{\big (}n-{\tfrac {j(3j-1)}{2}}{\big )}+\sum _{j=1}^{{\big \lfloor }{\tfrac {-1+{\sqrt {1+24n}}}{6}}{\big \rfloor }}(-1)^{j-1}~p{\big (}n-{\tfrac {j(3j+1)}{2}}{\big )}\,}$

### Intermediate partition function

The number of partitions of
 n
using only positive integers at least as large as
 k
, called the intermediate partition function
 p (k, n)
, is given by
${\displaystyle p(k,n)=?,\,}$
where
 p (k, n) = 0
when
 n < 0
or
 k > n > 0
, and
 p (k, 0) = 1
since the empty partition gives the empty sum (the additive identity, 0).

### Intermediate partition function formula

${\displaystyle p(n)=1+\sum _{i=1}^{\lfloor {\frac {n}{2}}\rfloor }p(i,n-i)\,}$
where we have the empty sum (the additive identity, 0) for the summation when
 n < 2
, thus giving
 p (n) = 1, 0   ≤   n   ≤   1
.

### Intermediate partition function formula (other version)

The partition function may be expressed in terms of the intermediate partition function trivially as

${\displaystyle p(n)=p(1,n),\,n\,\geq \,0,\,}$
and since every partition of
 n
with smallest part 1 is trivially obtained from the partition of
 n  −  1
without that part 1, we have
${\displaystyle p(0)=1,\,p(n)=p(n-1)+p(2,n),\,n\,\geq \,1,\,}$

and by recursion we get

${\displaystyle p(0)=1,\,p(n)=[p(n-2)+p(2,n-1)]+p(2,n),\,n\,\geq \,1,\,}$

...

${\displaystyle p(0)=1,\,p(n)=[p(n-3)+p(2,n-2)]+p(2,n-1)+p(2,n),\,n\,\geq \,1,\,}$

...

${\displaystyle p(0)=1,\,p(n)=p(0)+\sum _{i=1}^{n}p(2,i),\,n\,\geq \,1,\,}$
which may be rewritten as (where
 p (k, 0) = 1
since the empty partition gives the empty sum, i.e. the additive identity, 0)
${\displaystyle p(n)=\sum _{i=0}^{n}p(2,i),\,n\,\geq \,0,\,}$

or

${\displaystyle p(n)=1+\sum _{i=1}^{n}p(2,i),\,n\,\geq \,0.\,}$

### Partition function finite formulas

Emory University mathematicians Ken Ono and Zachary Kent, together with Amanda Folsom of Yale, have discovered that partition numbers behave like fractals. Ono and Jan Hendrik Bruinier, of the Technical University of Darmstadt, have devised the first finite formula to calculate the partitions of any number.[2][3]

The partition function can be expressed as a sum over the pentagonal partitions of
 n
. Let
n = k1 + 2 k2 + 5 k5 + =
m

 m
qm kqm
be a pentagonal partition of
 n
, where each
qm =
 m (3m  −  1) 2
is a generalized pentagonal number (GPN), sequence A001318, with
 qM
being the largest GPN less than or equal to
 n
. Then[4]
${\displaystyle p(n)=\sum _{k_{1}=0}^{n}\sum _{k_{2}=0}^{\lfloor n/2\rfloor }\sum _{k_{5}=0}^{\lfloor n/5\rfloor }\cdots \sum _{k_{q_{M}}=0}^{\lfloor n/q_{M}\rfloor }(-1)^{A}\left({\begin{array}{c}K\\k_{1},k_{2},k_{5},\ldots ,k_{q_{M}}\end{array}}\right)\delta _{n,\sum q_{m}\,k_{q_{m}}},}$

where

{\displaystyle {\begin{aligned}K&=k_{1}+k_{2}+k_{5}+k_{7}+\cdots ,\\A&=k_{5}+k_{7}+k_{22}+k_{26}+\cdots =\sum _{m=\pm 2,\pm 4,\ldots }k_{q_{m}},\end{aligned}}}

and where

${\displaystyle \left({\begin{array}{c}K\\k_{1},\ldots ,k_{n}\end{array}}\right)\equiv {\frac {K!}{k_{1}!\cdots k_{n}!}}~\delta _{K,k_{1}+\cdots +k_{n}}}$
is a multinomial coefficient. The number of terms in the sum for
 p (n)
is sequence A095699, e.g. , and
{\displaystyle {\begin{aligned}p(8)&=-\left({\begin{array}{c}2\\1,0,0,1\end{array}}\right)-\left({\begin{array}{c}3\\1,1,1,0\end{array}}\right)-\left({\begin{array}{c}4\\3,0,1,0\end{array}}\right)+\left({\begin{array}{c}4\\0,4,0,0\end{array}}\right)\\&~~~~\,+\left({\begin{array}{c}5\\2,3,0,0\end{array}}\right)+\left({\begin{array}{c}6\\4,2,0,0\end{array}}\right)+\left({\begin{array}{c}7\\6,1,0,0\end{array}}\right)+\left({\begin{array}{c}8\\8,0,0,0\end{array}}\right)\\&=-2-6-4+1+10+15+7+1=22.\end{aligned}}}

#### Determinant formulas

The value of the partition function
 p (n)
can be found from
${\displaystyle {\begin{matrix}{\text{GPN's}}&~\\{\begin{matrix}0\\1\\2\\~\\~\\5\\~\\7\\~\\\vdots \\\end{matrix}}&p(n)={\begin{vmatrix}~1&-1&~\\~1&~1&-1&~\\~0&~1&~1&-1&~\\~0&~0&~1&~1&-1&~\\-1&~0&~0&~1&~1&-1&~\\~0&-1&~0&~0&~1&~1&-1&~\\-1&~0&-1&~0&~0&~1&~1&-1&~\\~0&-1&~0&-1&~0&~0&~1&~1&-1&~\\~0&~0&-1&~0&-1&~0&~0&~1&~1&~\\~\vdots &~&~&~&~&~&~&~&~&\ddots \\\end{vmatrix}}_{n\times n}\end{matrix}}.}$
 p (n)
is the determinant of the
 n  ×  n
truncation of the infinite-dimensional Toeplitz matrix shown above. The only non-zero diagonals of this matrix are those which start on a row labeled by a generalized pentagonal number
 qm
. (The superdiagonal is taken to start on row 0.) On these diagonals, the matrix element is
 ( − 1) m+1
.

By using the identity by Ramanujan,[5]

${\displaystyle \sum _{k=0}^{\infty }p(5k+4)\,x^{k}=5\,{\frac {(x^{5})_{\infty }^{5}}{(x)_{\infty }^{6}}},\,(x)_{\infty }\equiv \prod _{m=1}^{\infty }(1-x^{m}),}$
the partition function
 p (5k  −  1)
can be expressed alternatively as the determinant of a lower,
 k
-dimensional matrix:
${\displaystyle p(5k-1)=5\,{\begin{vmatrix}~1&~&~&~&~&~&~&~1~\\-6&~1&~&~&~&~&~&~0~\\~9&-6&~1&~&~&~&~&~0~\\~10&~9&-6&~1&~&~&~&~0~\\-30&~10&~9&-6&~1&~&~&~0~\\~0&-30&~10&~9&-6&~1&~&-5~\\~11&~0&-30&~10&~9&-6&~&~0~\\~\vdots &~&~&~&~&~&\ddots &~\vdots ~\\\end{vmatrix}}_{k\times k}.}$
The numbers making up the 1st column correspond to sequence A000729, while every 5 th element (after the initial 1) in the last column is from sequence A000728:
{1, −5, 5, 10, −15, − 6, ...}
; all other elements in that column are zero. For example,
${\displaystyle p(29)=5\,{\begin{vmatrix}~1&~&~&~&~&~1~\\-6&~1&~&~&~&~0~\\~9&-6&~1&~&~&~0~\\~10&~9&-6&~1&~&~0~\\-30&~10&~9&-6&~1&~0~\\0&-30&~10&~9&-6&-5~\\\end{vmatrix}}=4565.}$
In a like fashion, by using two other identities by Ramanujan the partition functions
 p (7k  −  2)
and
 p (25k  −  1)
can also be expressed as
 k
-dimensional determinants:
{\displaystyle {\begin{aligned}p(7k-2)&=7\,{\begin{vmatrix}~1&~&~&~&1~\\-8&~1&~&~&3~\\~20&-8&~1&~&2~\\~0&~20&-8&~&8~\\~\vdots &~&~&\ddots &\vdots ~\\\end{vmatrix}}_{k\times k},\\p(25k-1)&=25\,{\begin{vmatrix}~1&~&~&~&63~\\-31&~1&~&~&4988~\\~434&-31&~1&~&95751~\\-3565&~434&-31&~&766014~\\~\vdots &~&~&\ddots &\vdots ~\\\end{vmatrix}}_{k\times k},\end{aligned}}}

where the first column in each matrix is sequence A000731 and A010836, respectively, and the last column in each is from the expansions:

{\displaystyle {\begin{aligned}(x)_{\infty }^{4}(x^{7})_{\infty }^{3}+7x(x^{7})_{\infty }^{7}&=1+3x+2x^{2}+8x^{3}+\cdots ;\\&\\63(x)_{\infty }^{24}(x^{5})_{\infty }^{6}+5^{3}\cdot 52x(x)_{\infty }^{18}(x^{5})_{\infty }^{12}&+5^{5}\cdot 63x^{2}(x)_{\infty }^{12}(x^{5})_{\infty }^{18}\\+~5^{8}\cdot 6x^{3}(x)_{\infty }^{6}(x^{5})_{\infty }^{24}&+5^{10}\cdot x^{4}(x^{5})_{\infty }^{30}\\&=63+4988x+95751x^{2}+766014x^{3}+\cdots .\end{aligned}}}
As an example, the calculation of
 p (149)
is as follows:
${\displaystyle p(149)=25\,{\begin{vmatrix}~1&~&~&~&~&~63~\\-31&~1&~&~&~&~4988~\\~434&-31&~1&~&~&~95751~\\-3565&~434&-31&~1&~&~766014~\\~18445&-3565&~434&-31&~1&~3323665~\\-57505&~18445&-3565&~434&-31&~8359848~\\\end{vmatrix}}=37027355200.}$
The partition function for partitions into distinct integers,
 q (n)
, is
${\displaystyle q(n)={\begin{vmatrix}~1&~&~&~&~&~&~&~&~1~\\-1&~1&~&~&~&~&~&~&~0~\\-1&-1&~1&~&~&~&~&~&-1~\\~0&-1&-1&~1&~&~&~&~&~0~\\~0&~0&-1&-1&~1&~&~&~&-1~\\~1&~0&~0&-1&-1&~1&~&~&~0~\\~0&~1&~0&~0&-1&-1&~1&~&~0~\\~1&~0&~1&~0&~0&-1&-1&~&~0~\\~\vdots &~&~&~&~&~&~&\ddots &~\vdots ~\\\end{vmatrix}}_{(n+1)\times (n+1)},}$
where the first column is sequence A010815, and a matrix element in the last column equals
 ( − 1) m
if the row number is
 2 qm + 1
; otherwise it equals zero. By a result due to Euler,
 q (n)
is also the partition function for partitions into odd integers.

### First differences of the partition function

${\displaystyle p(n+1)-p(n)=p(2,n+1),\,n\geq 1,\,}$

where ${\displaystyle \scriptstyle p(2,n+1)\,}$ is the number of partitions with parts of size 2 or larger.

### Partial sums of the partition function

The n-th partial sum of the partition function is equal to the n X n deternminant

${\displaystyle \sum _{k=0}^{n}p(k)={\begin{vmatrix}~2&-1&~\\~0&~2&-1&~\\-1&~0&~2&-1&~\\~0&-1&~0&~2&-1&~\\-1&~0&-1&~0&~2&-1&~\\~1&-1&~0&-1&~0&~2&-1&~\\~\vdots &~&~&~&~&~&\ddots &\ddots \\c_{n-1}&c_{n-2}&~&~&\cdots &~&~&~2&-1\\c_{n}&c_{n-1}&~&~&\cdots &~&~&~0&~2\end{vmatrix}}_{n\times n},}$

where c1 = 2, c2 = 0, and for k > 2,

{\displaystyle c_{k}=\left\{{\begin{aligned}(-1)^{m+1}&&{\text{ if }}k=q_{m};\\(-1)^{m}&&{\text{ if }}k=q_{m}+1;\\0&&{\text{otherwise}}.\end{aligned}}\right.}

### Partial sums of reciprocals of the partition function

${\displaystyle \sum _{n=0}^{m}{\frac {1}{p(n)}}=~?\,}$

### Sum of reciprocals of the partition function

${\displaystyle \sum _{n=0}^{\infty }{\frac {1}{p(n)}}=~?\,}$

The decimal expansion is ${\displaystyle \scriptstyle 2.510597483886\dots \,}$ (A078506)

### Order of basis of representation of integers as sum of partition numbers

${\displaystyle ?\,}$

### Sequences

A000041 Number of partitions
 p (n)
of
 n, n   ≥   0
.
{1, 1, 2, 3, 5, 7, 11, 15, 22, 30, 42, 56, 77, 101, 135, 176, 231, 297, 385, 490, 627, 792, 1002, 1255, 1575, 1958, 2436, 3010, 3718, 4565, 5604, 6842, 8349, 10143, 12310, 14883, 17977, 21637, 26015, ...}
A002865 Number of partitions
 p (2, n)
of
 n, n   ≥   0,
that do not contain 1 as a part. Corresponds to
 p (n)  −  p (n  −  1), n   ≥   0
.
{1, 0, 1, 1, 2, 2, 4, 4, 7, 8, 12, 14, 21, 24, 34, 41, 55, 66, 88, 105, 137, 165, 210, 253, 320, 383, 478, 574, 708, 847, 1039, 1238, 1507, 1794, 2167, 2573, 3094, 3660, 4378, 5170, 6153, 7245, 8591, ...}
A000070 Summatory function of the partition function,
 n

 k  = 0
p (k)
.
{1, 2, 4, 7, 12, 19, 30, 45, 67, 97, 139, 195, 272, 373, 508, 684, 915, 1212, 1597, 2087, 2714, 3506, 4508, 5763, 7338, 9296, 11732, 14742, 18460, 23025, 28629, 35471, 43820, 53963, 66273, 81156, ...}

A078506 Decimal expansion of sum of inverses of unrestricted partition function.

{2, 5, 1, 0, 5, 9, 7, 4, 8, 3, 8, 8, 6, 2, 9, 3, 9, 5, 3, 2, 3, 6, 8, 3, 4, 7, 2, 7, 4, 1, 5, 4, 6, 5, 4, 5, 1, 6, 8, 3, 5, 3, 1, 9, 4, 4, 9, 5, 5, 1, 4, 7, 6, 8, 1, 9, 0, 8, 0, 6, 2, 9, 9, 6, 5, 0, 8, 3, 8, 4, 5, 3, 2, 9, 0, 4, 4, ...}
A190840
 1 4n2√  3
exp π
2
 2n 3
rounded to nearest integer.
{2, 3, 4, 6, 9, 13, 18, 26, 35, 48, 65, 87, 115, 152, 199, 258, 333, 427, 545, 692, 875, 1102, 1381, 1725, 2145, 2659, 3285, 4046, 4967, 6080, 7423, 9037, 10974, 13293, 16065, 19370, 23304, 27977, 33519, ...}
A035949
 (n), n   ≥   1
. Number of partitions in parts not of the form
 13 k, 13 k + 1
or
 13 k  −  1
. Also number of partitions with no part of size 1 and differences between parts at distance 5 are greater than 1.
{0, 1, 1, 2, 2, 4, 4, 7, 8, 12, 14, 20, 23, 32, 39, 51, 61, 80, 95, 122, 146, 183, 219, 273, 324, 399, 475, 578, 685, 830, 979, 1177, 1387, 1655, 1945, 2311, 2705, 3198, 3737, 4396, 5121, 6003, 6973, 8143, 9439, ...}