This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A035949 Number of partitions in parts not of the form 13k, 13k+1 or 13k-1. Also number of partitions with no part of size 1 and differences between parts at distance 5 are greater than 1. 1
 0, 1, 1, 2, 2, 4, 4, 7, 8, 12, 14, 20, 23, 32, 39, 51, 61, 80, 95, 122, 146, 183, 219, 273, 324, 399, 475, 578, 685, 830, 979, 1177, 1387, 1655, 1945, 2311, 2705, 3198, 3737, 4396, 5121, 6003, 6973, 8143, 9439, 10981, 12697, 14730, 16987, 19648, 22614 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,4 COMMENTS Case k=6,i=1 of Gordon Theorem. REFERENCES G. E. Andrews, The Theory of Partitions, Addison-Wesley, 1976, p. 109. LINKS FORMULA a(n) ~ sin(Pi/13) * 5^(1/4) * exp(2*Pi*sqrt(5*n/39)) / (3^(1/4) * 13^(3/4) * n^(3/4)). - Vaclav Kotesovec, Nov 22 2015 MATHEMATICA nmax = 60; Rest[CoefficientList[Series[Product[1 / ((1 - x^(13*k-2)) * (1 - x^(13*k-3)) * (1 - x^(13*k-4)) * (1 - x^(13*k-5)) * (1 - x^(13*k-6)) * (1 - x^(13*k-7)) * (1 - x^(13*k-8)) * (1 - x^(13*k-9)) * (1 - x^(13*k-10)) * (1 - x^(13*k-11)) ), {k, 1, nmax}], {x, 0, nmax}], x]] (* Vaclav Kotesovec, Nov 22 2015 *) CROSSREFS Sequence in context: A266778 A107235 A266779 * A240014 A266780 A266781 Adjacent sequences:  A035946 A035947 A035948 * A035950 A035951 A035952 KEYWORD nonn,easy AUTHOR STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 16 02:52 EDT 2019. Contains 328038 sequences. (Running on oeis4.)