This site is supported by donations to The OEIS Foundation.
Bernoulli's triangle
Bernoulli's triangle is the triangle of partial sums of binomial coefficients, i.e. partial sums across rows of Pascal's triangle (see A007318). For example, in Pascal's triangle, the row for is 1 3 3 1. In Bernoulli's triangle, 1 is 1, 1 + 3 is 4, 1 + 3 + 3 is 7 and 1 + 3 + 3 + 1 is 8, giving 1 4 7 8 as the row for in Bernoulli's triangle.
As the row sums of Pascal's triangle give the powers of two (see A000079), so the rightmost falling diagonal of Bernoulli's triangle contains the powers of two, and the second rightmost falling diagonal contains the Mersenne numbers (see A000225).
B | E | R | N | O | U | L | L | I | ' | S | T | R | I | A | N | G | L | E | Row sums
(A001792()) | ||||||
0 | 1 | 1 | |||||||||||||||||||||||
1 | 1 | 2 | 3 | ||||||||||||||||||||||
2 | 1 | 3 | 4 | 8 | |||||||||||||||||||||
3 | 1 | 4 | 7 | 8 | 20 | ||||||||||||||||||||
4 | 1 | 5 | 11 | 15 | 16 | 48 | |||||||||||||||||||
5 | 1 | 6 | 16 | 26 | 31 | 32 | 112 | ||||||||||||||||||
6 | 1 | 7 | 22 | 42 | 57 | 63 | 64 | 256 | |||||||||||||||||
7 | 1 | 8 | 29 | 64 | 99 | 120 | 127 | 128 | 576 | ||||||||||||||||
8 | 1 | 9 | 37 | 93 | 163 | 219 | 247 | 255 | 256 | 1280 | |||||||||||||||
9 | 1 | 10 | 46 | 130 | 256 | 382 | 466 | 502 | 511 | 512 | 2816 | ||||||||||||||
10 | 1 | 11 | 56 | 176 | A000127 starting with : Maximal number of regions obtained by joining points around a circle by straight lines. | 6144 | |||||||||||||||||||
11 | 1 | 12 | 67 | A000125 starting with : Cake numbers: maximal number of pieces resulting from planar cuts through a cube or cake. | 13312 | ||||||||||||||||||||
12 | 1 | 13 | A000124 starting with : Central polygonal numbers | 28672 | |||||||||||||||||||||
13 | 1 | A000027 starting with : Each positive integer greater than 1 | 61440 | ||||||||||||||||||||||
14 | A000012: Continued fraction for the golden ratio | 131072 |
Contents
- 1 Bernoulli's triangle recurrence equation
- 2 Bernoulli's triangle formula
- 3 Bernoulli's triangle rows
- 4 Bernoulli's triangle rising diagonals
- 5 Bernoulli's triangle falling diagonals
- 6 Bernoulli's triangle central elements
- 7 Bernoulli's triangle (slope 1/2) rising diagonals
- 8 Bernoulli's triangle (slope -1/2) falling diagonals
- 9 See also
Bernoulli's triangle recurrence equation
The leftmost entries are set to 1, i.e. the leftmost entries of Pascal's triangle. The rightmost entries are set to , i.e. the row sums of Pascal's triangle. Then a recurrence equation identical to Pascal's triangle is applied.
Bernoulli's triangle formula
and
Bernoulli's triangle rows
Bernoulli's triangle read by rows gives the infinite sequence of finite sequences
- {{1}, {1, 2}, {1, 3, 4}, {1, 4, 7, 8}, {1, 5, 11, 15, 16}, {1, 6, 16, 26, 31, 32}, {1, 7, 22, 42, 57, 63, 64}, {1, 8, 29, 64, 99, 120, 127, 128}, {1, 9, 37, 93, 163, 219, 247, 255, 256}, ...}
whose concatenation gives the infinite sequence (see A008949)
- {1, 1, 2, 1, 3, 4, 1, 4, 7, 8, 1, 5, 11, 15, 16, 1, 6, 16, 26, 31, 32, 1, 7, 22, 42, 57, 63, 64, 1, 8, 29, 64, 99, 120, 127, 128, 1, 9, 37, 93, 163, 219, 247, 255, 256, 1, 10, 46, 130, 256, 382, 466, 502, 511, 512, ...}
Bernoulli's triangle rows sums
Bernoulli's triangle rows sums gives the infinite sequence (see A001792)
- {1, 3, 8, 20, 48, 112, 256, 576, 1280, 2816, 6144, 13312, 28672, 61440, 131072, 278528, 589824, 1245184, 2621440, 5505024, 11534336, 24117248, 50331648, 104857600, 218103808, 452984832, ...}
which is given by the formula
The generating function is
Bernoulli's triangle rows alternating sign sums
Bernoulli's triangle rising diagonals
The table gives the th member, , of the th, , rising diagonal (0 for leftmost).
sequences | A-number | |
---|---|---|
0 | {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...} | A000012() |
1 | {2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, ...} | A000027() |
2 | {4, 7, 11, 16, 22, 29, 37, 46, 56, 67, 79, 92, 106, 121, 137, 154, 172, 191, 211, 232, 254, 277, 301, 326, 352, 379, 407, 436, 466, 497, 529, 562, 596, 631, 667, 704, 742, 781, 821, ...} | A000124() |
3 | {8, 15, 26, 42, 64, 93, 130, 176, 232, 299, 378, 470, 576, 697, 834, 988, 1160, 1351, 1562, 1794, 2048, 2325, 2626, 2952, 3304, 3683, 4090, 4526, 4992, 5489, 6018, 6580, 7176, ...} | A000125() |
4 | {16, 31, 57, 99, 163, 256, 386, 562, 794, 1093, 1471, 1941, 2517, 3214, 4048, 5036, 6196, 7547, 9109, 10903, 12951, 15276, 17902, 20854, 24158, 27841, 31931, 36457, 41449, ...} | A000127() |
5 | {32, 63, 120, 219, 382, 638, 1024, 1586, 2380, 3473, 4944, 6885, 9402, 12616, 16664, 21700, 27896, 35443, 44552, 55455, 68406, 83682, 101584, 122438, 146596, 174437, ...} | A006261() |
6 | {64, 127, 247, 466, 848, 1486, 2510, 4096, 6476, 9949, 14893, 21778, 31180, 43796, 60460, 82160, 110056, 145499, 190051, 245506, 313912, 397594, 499178, 621616, 768212, ...} | A008859() |
7 | {128, 255, 502, 968, 1816, 3302, 5812, 9908, 16384, 26333, 41226, 63004, 94184, 137980, 198440, 280600, 390656, 536155, 726206, 971712, 1285624, 1683218, 2182396, ...} | A008860() |
8 | {256, 511, 1013, 1981, 3797, 7099, 12911, 22819, 39203, 65536, 106762, 169766, 263950, 401930, 600370, 880970, 1271626, 1807781, 2533987, 3505699, 4791323, 6474541, ...} | A008861() |
9 | {512, 1023, 2036, 4017, 7814, 14913, 27824, 50643, 89846, 155382, 262144, 431910, 695860, 1097790, 1698160, 2579130, 3850756, 5658537, 8192524, 11698223, 16489546, ...} | A008862() |
10 | {1024, 2047, 4083, 8100, 15914, 30827, 58651, 109294, 199140, 354522, 616666, 1048576, 1744436, 2842226, 4540386, 7119516, 10970272, 16628809, 24821333, 36519556, ...} | A008863() |
Formulae
|
Generating
function
|
Differences
|
Partial sums
|
Partial sums of reciprocals
|
Sum of Reciprocals
| |
---|---|---|---|---|---|---|
0 | ||||||
1 | ||||||
2 | ||||||
3 | ||||||
4 | ||||||
5 | ||||||
6 | ||||||
7 | ||||||
8 | ||||||
9 | ||||||
10 |
Bernoulli's triangle falling diagonals
The table gives the th member, , of the th, , falling diagonal (0 for rightmost).
sequences | A-number | |
---|---|---|
0 | {1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096, 8192, 16384, 32768, 65536, 131072, 262144, 524288, 1048576, 2097152, 4194304, 8388608, 16777216, 33554432, 67108864, ...} | A000079 |
1 | {1, 3, 7, 15, 31, 63, 127, 255, 511, 1023, 2047, 4095, 8191, 16383, 32767, 65535, 131071, 262143, 524287, 1048575, 2097151, 4194303, 8388607, 16777215, 33554431, 67108863, ...} | A000225 |
2 | {1, 4, 11, 26, 57, 120, 247, 502, 1013, 2036, 4083, 8178, 16369, 32752, 65519, 131054, 262125, 524268, 1048555, 2097130, 4194281, 8388584, 16777191, 33554406, 67108837, ...} | A000295 |
3 | {1, 5, 16, 42, 99, 219, 466, 968, 1981, 4017, 8100, 16278, 32647, 65399, 130918, 261972, 524097, 1048365, 2096920, 4194050, 8388331, 16776915, 33554106, 67108512, 134217349, ...} | A002662 |
4 | {1, 6, 22, 64, 163, 382, 848, 1816, 3797, 7814, 15914, 32192, 64839, 130238, 261156, 523128, 1047225, 2095590, 4192510, 8386560, 16774891, 33551806, 67105912, 134214424, ...} | A002663 |
5 | {1, 7, 29, 93, 256, 638, 1486, 3302, 7099, 14913, 30827, 63019, 127858, 258096, 519252, 1042380, 2089605, 4185195, 8377705, 16764265, 33539156, 67090962, 134196874, 268411298, ...} | A002664 |
6 | {1, 8, 37, 130, 386, 1024, 2510, 5812, 12911, 27824, 58651, 121670, 249528, 507624, 1026876, 2069256, 4158861, 8344056, 16721761, 33486026, 67025182, 134116144, 268313018, ...} | A035038 |
7 | {1, 9, 46, 176, 562, 1586, 4096, 9908, 22819, 50643, 109294, 230964, 480492, 988116, 2014992, 4084248, 8243109, 16587165, 33308926, 66794952, 133820134, 267936278, 536249296, ...} | A035039 |
8 | {1, ...} | A?????? |
9 | {1, ...} | A?????? |
10 | {1, ...} | A?????? |
Formulae
|
Generating
function
|
Differences
|
Partial sums
|
Partial sums of reciprocals
|
Sum of Reciprocals
| |
---|---|---|---|---|---|---|
0 | ||||||
1 | ||||||
2 | ||||||
3 | ||||||
4 | ||||||
5 | ||||||
6 | ||||||
7 | ||||||
8 | ||||||
9 | ||||||
10 |
Bernoulli's triangle central elements
Bernoulli's triangle central elements give the infinite sequence (Cf. A032443)
- {1, 3, 11, 42, 163, 638, 2510, 9908, 39203, 155382, 616666, 2449868, 9740686, 38754732, 154276028, 614429672, 2448023843, 9756737702, 38897306018, 155111585372, 618679078298, ...}
which is given by the formula
The generating function is
Bernoulli's triangle (slope 1/2) rising diagonals
(...)
Bernoulli's triangle (slope 1/2) rising diagonals sums
(...)
Bernoulli's triangle (slope 1/2) rising diagonals alternating sign sums
(...)
Bernoulli's triangle (slope -1/2) falling diagonals
(...)
Bernoulli's triangle (slope -1/2) falling diagonals sums
(...)
Bernoulli's triangle (slope -1/2) falling diagonals alternating sign sums
(...)
See also
- A?????? Multiplicative encoding of Bernoulli's triangle: Product p(i+1)^T(n,i).