OFFSET
1,3
COMMENTS
Thanks to David W. Wilson for the proof that this sequence is a proper subset of A003226.
Also, numbers m such that the m-th k-gonal number ends in m for k == 1, 3, 5, or 9 (mod 10). - Robert Dawson, Jul 09 2018
LINKS
Chai Wah Wu, Table of n, a(n) for n = 1..888
Robert Dawson, On Some Sequences Related to Sums of Powers, J. Int. Seq., Vol. 21 (2018), Article 18.7.6.
EXAMPLE
The 5th triangular = 15 ends in 5, hence 5 is a term of the sequence.
MATHEMATICA
b5 = FromDigits[ Reverse[ IntegerDigits[a5]]]; b6 = FromDigits[ Reverse[ IntegerDigits[a6]]]; f[0] = 1; f[n_] := Block[{c5 = Mod[b5, 10^n], c6 = Mod[b6, 10^n]}, If[ Mod[c5(c5 + 1)/2, 10^n] == c5, c5, c6]]; Union[ Table[ f[n], {n, 0, 20}]]
PROG
(Python)
from itertools import count, islice
from sympy.ntheory.modular import crt
def A067270_gen(): # generator of terms
a = 0
yield from (0, 1)
for n in count(0):
if (b := int(min(crt(m:=(1<<(n+1), 5**n), (0, 1))[0], crt(m, (1, 0))[0]))) > a:
yield b
a = b
CROSSREFS
KEYWORD
base,nonn
AUTHOR
Joseph L. Pe, Feb 21 2002
EXTENSIONS
Edited and extended by Robert G. Wilson v, Nov 20 2002
0 prepended by David A. Corneth, Aug 02 2018
STATUS
approved