login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A272853
Ramanujan's alpha-series.
3
9, 791, 65601, 5444135, 451797561, 37493753471, 3111529740489, 258219474707159, 21429104870953665, 1778357484814447079, 147582242134728153849, 12247547739697622322431
OFFSET
0,1
COMMENTS
Ramanujan's notes define this by the same G.f. as A051028 (the a-series) but using Laurent series expansion. These give identities of the form alpha(n)^3 + beta(n)^3 = gamma(n)^3 + (-1)^n, where alpha(n)=A272853(n), beta(n)=A272854(n) and gamma(n)=A272855(n). They are from page 82 of the "lost notebook" of Ramanujan. A051028,A051029,A051030 give his examples (135, 138, 172) and (11161, 11468, 14258) while A272853,A272854,A272855 give the examples (9, 10, 12), (791, 812, 1010), and (65601, 67402, 83802).
REFERENCES
S. Ramanujan, The Lost Notebook and Other Unpublished Papers (1988), p. 341. New Delhi (Narosa publ. house).
FORMULA
G.f.: (9+53*x+x^2)/(1-82*x-82*x^2+x^3).
a(-3)=-11161; a(-2)=-135; a(-1)=-1; a(n) = 82*a(n-1)+82*a(n-2)-a(n-3).
A272853(n)^3 + A272854(n)^3 = A272855(n)^3 + (-1)^n.
EXAMPLE
a(3)=5444135 because 5444135^3 + 5593538^3 = 6954572^3 - 1.
MATHEMATICA
Rest@ CoefficientList[Normal@ Series[(1 + 53*a + 9*a^2)/(1 - 82*a - 82*a^2 + a^3), {a, Infinity, 20}], 1/a] (* Giovanni Resta, May 08 2016 *)
PROG
(Wolfram|Alpha) Series[(1+53*a+9*a^2)/(1-82*a-82*a^2+a^3), {a, Infinity, 10}]
CROSSREFS
KEYWORD
nonn
AUTHOR
Robert Munafo, May 08 2016
STATUS
approved