login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A051030 Ramanujan's c-series: expansion of (2+8*x-10*x^2)/(1-82*x-82*x^2+x^3). 7
2, 172, 14258, 1183258, 98196140, 8149096378, 676276803218, 56122825570732, 4657518245567522, 386517891556533610, 32076327480946722092, 2661948663027021400042, 220909662703761829481378, 18332840055749204825554348, 1521404814964480238691529490 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,1

COMMENTS

The "amazing" identity of Ramanujan is a(n)^3 + b(n)^3 = c(n)^3 + (-1)^n, where a(n) = A051028(n), b(n) = A051029(n) and c(n) = A051030(n). - Emeric Deutsch, Oct 14 2006

LINKS

Harvey P. Dale, Table of n, a(n) for n = 0..500

Kwang-Wu Chen, Extensions of an amazing identity of Ramanujan, Fib. Q., 50 (2012), 227-230.

J. H. Han and M. D. Hirschhorn, Another Look at an Amazing Identity of Ramanujan, Mathematics Magazine, Vol. 79 (2006), pp. 302-304.

Michael D. Hirschhorn, An amazing identity of Ramanujan, Math. Mag. 68 (1995), no. 3, 199--201. MR1335148

Michael D. Hirschhorn, A Proof in the Spirit of Zeilberger of an Amazing Identity of Ramanujan, Math. Mag., 69.4 (1996), 267-269.

J. McLaughlin, An identity motivated by an amazing identity of Ramanujan, Fib. Q., 48 (No. 1, 2010), 34-38.

Eric Weisstein's World of Mathematics, Ramanujan's Sum Identity.

Index entries for linear recurrences with constant coefficients, signature (82, 82, -1).

FORMULA

G.f.: (2+8*x-10*x^2)/((1+x)*(1-83*x+x^2)).

X(n+1) = AX(n), where X(n) = transpose(A051028(n), A051029(n), A051030(n)) and A = matrix(3,3,[63,104,-68; 64,104,-67; 80,131,-85)]). - Emeric Deutsch, Oct 14 2006

a(0) = 2, a(1) = 172, a(2) = 14258, a(n) = 82*a(n-1)+82*a(n-2)-a(n-3). - Harvey P. Dale, Dec 17 2012

MAPLE

g:=(2+8*x-10*x^2)/(1-82*x-82*x^2+x^3): gser:=series(g, x=0, 20): seq(coeff(gser, x, n), n=0..12); # Emeric Deutsch, Oct 14 2006

MATHEMATICA

CoefficientList[Series[(2+8x-10x^2)/(1-82x-82x^2+x^3), {x, 0, 30}], x] (* or *) LinearRecurrence[{82, 82, -1}, {2, 172, 14258}, 20] (* Harvey P. Dale, Dec 17 2012 *)

PROG

(PARI) Vec((2+8*x-10*x^2)/(1-82*x-82*x^2+x^3) + O(x^30)) \\ Michel Marcus, Feb 29 2016

(Magma) I:=[2, 172, 14258]; [n le 3 select I[n] else 82*Self(n-1)+82*Self(n-2)-Self(n-3):n in [1..30]]; // Vincenzo Librandi, Feb 29 2016

CROSSREFS

Cf. A051028, A051029.

Sequence in context: A230511 A209607 A243230 * A339641 A262728 A139935

Adjacent sequences: A051027 A051028 A051029 * A051031 A051032 A051033

KEYWORD

nonn

AUTHOR

Eric W. Weisstein

EXTENSIONS

Minor edits (g.f. and name) by M. F. Hasler, May 08 2016

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 5 19:04 EST 2022. Contains 358588 sequences. (Running on oeis4.)