

A272853


Ramanujan's alphaseries.


3



9, 791, 65601, 5444135, 451797561, 37493753471, 3111529740489, 258219474707159, 21429104870953665, 1778357484814447079, 147582242134728153849, 12247547739697622322431
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,1


COMMENTS

Ramanujan's notes define this by the same G.f. as A051028 (the aseries) but using Laurent series expansion. These give identities of the form alpha(n)^3 + beta(n)^3 = gamma(n)^3 + (1)^n, where alpha(n)=A272853(n), beta(n)=A272854(n) and gamma(n)=A272855(n). They are from page 82 of the "lost notebook" of Ramanujan. A051028,A051029,A051030 give his examples (135, 138, 172) and (11161, 11468, 14258) while A272853,A272854,A272855 give the examples (9, 10, 12), (791, 812, 1010), and (65601, 67402, 83802).


REFERENCES

S. Ramanujan, The Lost Notebook and Other Unpublished Papers (1988), p. 341. New Delhi (Narosa publ. house).


LINKS

Seiichi Manyama, Table of n, a(n) for n = 0..520
Robert Munafo, Sequences Related to the Work of Srinivasa Ramanujan


FORMULA

G.f.: (9+53*x+x^2)/(182*x82*x^2+x^3).
a(3)=11161; a(2)=135; a(1)=1; a(n) = 82*a(n1)+82*a(n2)a(n3).
A272853(n)^3 + A272854(n)^3 = A272855(n)^3 + (1)^n.


EXAMPLE

a(3)=5444135 because 5444135^3 + 5593538^3 = 6954572^3  1.


MATHEMATICA

Rest@ CoefficientList[Normal@ Series[(1 + 53*a + 9*a^2)/(1  82*a  82*a^2 + a^3), {a, Infinity, 20}], 1/a] (* Giovanni Resta, May 08 2016 *)


PROG

(WolframAlpha) Series[(1+53*a+9*a^2)/(182*a82*a^2+a^3), {a, Infinity, 10}]


CROSSREFS

Cf. A051028, A051029, A051030.
Cf. A272854, A272855.
Sequence in context: A168257 A303143 A137065 * A332179 A196981 A197166
Adjacent sequences: A272850 A272851 A272852 * A272854 A272855 A272856


KEYWORD

nonn


AUTHOR

Robert Munafo, May 08 2016


STATUS

approved



