login
A332179
a(n) = 7*(10^(2n+1)-1)/9 + 2*10^n.
9
9, 797, 77977, 7779777, 777797777, 77777977777, 7777779777777, 777777797777777, 77777777977777777, 7777777779777777777, 777777777797777777777, 77777777777977777777777, 7777777777779777777777777, 777777777777797777777777777, 77777777777777977777777777777, 7777777777777779777777777777777
OFFSET
0,1
COMMENTS
See A183183 = {1, 2, 8, 19, 20, 212, 280, ...} for the indices of primes.
FORMULA
a(n) = 7*A138148(n) + 9*10^n.
G.f.: (9 - 202*x - 500*x^2)/((1 - x)*(1 - 10*x)*(1 - 100*x)).
a(n) = 111*a(n-1) - 1110*a(n-2) + 1000*a(n-3) for n > 2.
MAPLE
A332179 := n -> 7*(10^(n*2+1)-1)/9 + 2*10^n;
MATHEMATICA
Array[7 (10^(2 # + 1) - 1)/9 + 2*10^# &, 15, 0]
PROG
(PARI) apply( {A332179(n)=10^(n*2+1)\9*7+2*10^n}, [0..15])
(Python) def A332179(n): return 10**(n*2+1)//9*7+2*10^n
CROSSREFS
Cf. A138148 (cyclops numbers with binary digits only).
Cf. (A077796-1)/2 = A183183: indices of primes.
Cf. A002275 (repunits R_n = [10^n/9]), A002281 (7*R_n), A011557 (10^n).
Cf. A332171 .. A332178 (variants with different middle digit 1, ..., 8).
Sequence in context: A303143 A137065 A272853 * A196981 A197166 A015025
KEYWORD
nonn,base,easy
AUTHOR
M. F. Hasler, Feb 08 2020
STATUS
approved