OFFSET
369693100,1
COMMENTS
Decimal expansion of 3^774840978. - Jianing Song, Sep 15 2019
REFERENCES
Ilan Vardi, "Computational Recreations in Mathematica," Addison-Wesley Publishing Co., Redwood City, CA, 1991, pages 226-229.
LINKS
Googlology Wiki, First Digits
Hans Havermann, n^n^n for n=1 to n=5
Hans Havermann, 9^9^9, Volume 1, the first x decimal digits, in 1100 pages with 10000 digits per page.
Math Forum, "Ask Dr. Math", Value of 9^(9^9)?
Robert P. Munafo, Hyper4 Iterated Exponential Function
Robert P. Munafo and Robert G. Wilson v, Mathematica coding for "SuperPowerMod" from Vardi
Eric Weisstein's World of Mathematics, Joyce Sequence
Robert G. Wilson v, Mathematica coding for "SuperPowerMod" from Vardi
FORMULA
9^(9^9) = ((((((((9^9)^9)^9)^9)^9)^9)^9)^9)^9.
EXAMPLE
= 42812477317574704803698711593056352133905548224144
35141747537230535238874717350483531936652994320333
... (369,692,900 digits omitted) ...
26170043150602250406601961656994397543610268552663
74036682906190174923494324178799359681422627177289.
The first and last 100 digits are shown above, with the intervening digits omitted.
The final one hundred digits were computed using PowerMod[9, 9^9, 10^100].
MATHEMATICA
nbrdgt = 105; f[base_, exp_] := RealDigits[ 10^FractionalPart[ N[ exp*Log10[ base], nbrdgt + Floor[ Log10[ exp]] + 2]], 10, nbrdgt][[1]]; f[9, 9^9] (* or *)
f[n_] := Quotient[n^9, 10^(Floor[9*Log10@ n] - 1010)]; Nest[ f@ # &, 9, 9]
CROSSREFS
KEYWORD
AUTHOR
Robert Munafo and Robert G. Wilson v, Apr 18 2014
EXTENSIONS
Keyword: fini added by Jianing Song, Sep 18 2019
STATUS
approved