login
A241297
Decimal expansion of 8^(8^(8^8)) = 8^^4.
11
6, 4, 7, 4, 0, 3, 2, 9, 6, 4, 6, 6, 9, 7, 0, 6, 7, 9, 9, 7, 3, 8, 6, 6, 2, 5, 1, 7, 9, 3, 9, 0, 2, 7, 4, 9, 3, 5, 5, 2, 4, 6, 5, 7, 8, 1, 5, 5, 6, 6, 0, 5, 4, 7, 1, 6, 8, 1, 8, 4, 5, 3, 5, 6, 3, 8, 7, 4, 9, 0, 9, 6, 9, 9, 4, 7, 6, 4, 5, 1, 3, 0, 3, 8, 6, 9, 6, 9, 9, 3, 2, 8, 2, 3, 7, 1, 4, 0, 2, 1, 4, 4, 3, 0, 5
OFFSET
1,1
COMMENTS
The offset is 1 because the true offset would be 5.431653469... * 10^15151335, which is too large to be represented properly in the OEIS.
Decimal expansion of 2^(3*2^50331648). - Jianing Song, Dec 26 2022
FORMULA
= 8^(8^(8^8)) = ((((( ... 16777205 ... (((((8^8)^8)^8)^8)^8) ... 16777205 ... ^8)^8)^8)^8)^8)^8.
EXAMPLE
=6474032964669706799738662517939027493552465781556605471681845356387490969947645130386969932823714021...(5.431653456330093... * 10^15151335)...6641744766927456476257727570637041060682921214560194830819153337200429887920249826536946437619449856.
The above example line shows the first one hundred decimal digits and the last one hundred digits with the number of unrepresented digits in parenthesis.
The final one hundred digits where computed by: PowerMod[8, 8^8^8, 10^100].
MATHEMATICA
nbrdgt = 105; f[base_, exp_] := RealDigits[ 10^FractionalPart[ N[ exp*Log10[ base], nbrdgt + Floor[ Log10[ exp]] + 2]], 10, nbrdgt][[1]]; f[ 8, 8^8^8]
KEYWORD
nonn,cons,fini
AUTHOR
EXTENSIONS
Keyword: fini added by Jianing Song, Sep 18 2019
STATUS
approved