login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A202955 Decimal expansion of Pi^Pi^Pi^Pi. 11
9, 0, 8, 0, 2, 2, 2, 4, 5, 5, 3, 9, 0, 6, 1, 7, 7, 6, 9, 7, 2, 3, 9, 3, 1, 7, 1, 3, 2, 8, 4, 2, 8, 7, 7, 4, 6, 5, 1, 6, 0, 4, 6, 3, 5, 8, 1, 3, 1, 8, 9, 7, 3, 5, 9, 9, 4, 6, 9, 3, 5, 9, 2, 6, 3, 3, 6, 8, 4, 5, 1, 9, 9, 0, 5, 8, 1, 5, 3, 6, 0, 9, 5, 6, 8, 6, 6, 7, 6, 7, 2, 6, 0, 1, 7, 6, 8, 6, 3, 1, 3, 6, 9, 4, 2, 0, 9, 8, 3, 7, 4, 4, 2, 6, 5, 5 (list; constant; graph; refs; listen; history; text; internal format)
OFFSET

666262452970848504,1

COMMENTS

The offset equals the floor(Pi^Pi^Pi*Log_10(Pi))+1. - Robert G. Wilson v, Mar 13 2014

LINKS

Table of n, a(n) for n=666262452970848504..666262452970848619.

FORMULA

A000796^A073234.

EXAMPLE

9.080222455390617769723931713284287746516046358131897359946935926336845199... *10^666262452970848503

MATHEMATICA

nbrdgt = 105; f[base_, exp_] := RealDigits[ 10^FractionalPart[ N[exp*Log10[base], nbrdgt + Floor[Log10[exp]] + 2]], 10, nbrdgt][[1]]; f[Pi, Pi^Pi^Pi] (* Robert G. Wilson v, Mar 13 2014 *)

PROG

(PARI) LP(a, b)=[10^frac(a=log(a)/log(10)*b), a\1] /* returns [m, e] such that a^b = m*10^e */

LP(Pi, Pi^Pi^Pi)

CROSSREFS

Cf. A073236, A085667, A000796 (Pi), A073234 (Pi^Pi), A073234 (Pi^Pi^Pi), A073235 ((Pi^Pi)^Pi), A202953 ((Pi^Pi)^(Pi^Pi)).

Sequence in context: A181446 A097669 A248935 * A019820 A019985 A242711

Adjacent sequences:  A202952 A202953 A202954 * A202956 A202957 A202958

KEYWORD

nonn,cons

AUTHOR

M. F. Hasler, Dec 26 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified November 19 16:10 EST 2017. Contains 294936 sequences.