login
A374382
Number of ways to write n as an ordered sum of a triangular number, a square and an odd square.
1
0, 1, 2, 1, 1, 2, 1, 1, 2, 1, 3, 4, 2, 3, 1, 2, 4, 2, 2, 3, 4, 1, 1, 3, 2, 4, 5, 3, 4, 4, 3, 4, 4, 2, 3, 5, 2, 5, 5, 2, 5, 5, 1, 1, 4, 3, 7, 5, 1, 4, 6, 5, 2, 7, 5, 6, 6, 2, 4, 4, 5, 5, 7, 2, 5, 9, 3, 2, 7, 1, 5, 9, 1, 6, 5, 5, 4, 4, 3, 7, 7, 5, 5, 5, 5, 5, 10, 2, 7, 7, 4, 8, 7, 5, 4, 10, 6, 4, 3, 2, 9
OFFSET
0,3
LINKS
FORMULA
G.f.: (Sum_{k>=0} x^(k*(k+1)/2)) * (Sum_{k>=0} x^(k^2)) * (Sum_{k>=0} x^((2*k+1)^2)).
EXAMPLE
2 = A000217(1) + A000290(0) + A016754(0) = A000217(0) + A000290(1) + A016754(0). So a(2) = 2.
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Jul 07 2024
STATUS
approved