login
A296072
a(n) = Product_{d|n, d<n} A019565(A289814(A295882(d))); a product obtained from the -1's present in balanced ternary representation of the deficiencies of the proper divisors of n.
4
1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 3, 2, 1, 1, 12, 1, 2, 6, 1, 1, 12, 1, 1, 12, 3, 1, 12, 1, 1, 2, 15, 3, 216, 1, 5, 2, 6, 1, 6, 1, 2, 36, 5, 1, 180, 3, 10, 30, 1, 1, 1080, 1, 3, 10, 1, 1, 3240, 1, 1, 36, 1, 1, 20, 1, 450, 10, 30, 1, 45360, 1, 1, 30, 75, 3, 10, 1, 60, 360, 1, 1, 540, 15, 105, 2, 2, 1, 3240, 3, 50, 2, 35, 5, 2520, 1, 630, 60, 90, 1, 900
OFFSET
1,6
COMMENTS
Used as a part of filter A296073.
LINKS
FORMULA
a(n) = Product_{d|n, d<n} A019565(A289814(A295882(d))).
PROG
(PARI)
A019565(n) = {my(j, v); factorback(Mat(vector(if(n, #n=vecextract(binary(n), "-1..1")), j, [prime(j), n[j]])~))}; \\ This function from M. F. Hasler
A117967(n) = if(n<=1, n, if(!(n%3), 3*A117967(n/3), if(1==(n%3), 1+3*A117967((n-1)/3), 2+3*A117967((n+1)/3))));
A117968(n) = if(1==n, 2, if(!(n%3), 3*A117968(n/3), if(1==(n%3), 2+3*A117968((n-1)/3), 1+3*A117968((n+1)/3))));
A289814(n) = { my (d=digits(n, 3)); from digits(vector(#d, i, if (d[i]==2, 1, 0)), 2); } \\ From Rémy Sigrist
A295882(n) = { my(x = (2*n)-sigma(n)); if(x >= 0, A117967(x), A117968(-x)); };
A296072(n) = { my(m=1); fordiv(n, d, if(d < n, m *= A019565(A289814(A295882(d))))); m; };
(Scheme)
(define (A296072 n) (let loop ((m 1) (props (proper-divisors n))) (cond ((null? props) m) (else (loop (* m (A019565 (A289814 (A295882 (car props))))) (cdr props))))))
(define (proper-divisors n) (reverse (cdr (reverse (divisors n)))))
(define (divisors n) (let loop ((k n) (divs (list))) (cond ((zero? k) divs) ((zero? (modulo n k)) (loop (- k 1) (cons k divs))) (else (loop (- k 1) divs)))))
CROSSREFS
KEYWORD
nonn
AUTHOR
Antti Karttunen, Dec 04 2017
STATUS
approved