login
A373896
Number of lattice points inside or on the 8-dimensional hypersphere x_1^2 + x_2^2 + x_3^2 + x_4^2 + x_5^2 + x_6^2 + x_7^2 + x_8^2 = 10^n.
2
17, 47921, 415055025, 4068011664081, 40596481219349025, 405880555110153633585, 4058721509888208894731345, 40587130610718907618215585345, 405871222004868007901459647593809, 4058712135741827985063748936303681217
OFFSET
0,1
FORMULA
a(n) = A341397(10^n).
a(n) == 1 (mod 16).
PROG
(PARI) a008457(n) = sumdiv(n, d, (-1)^(n-d)*d^3);
a341397(n) = 1+16*sum(k=1, n, a008457(k));
a(n) = a341397(10^n);
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Jun 21 2024
STATUS
approved