login
A341397
Number of integer solutions to (x_1)^2 + (x_2)^2 + ... + (x_8)^2 <= n.
7
1, 17, 129, 577, 1713, 3729, 6865, 12369, 21697, 33809, 47921, 69233, 101041, 136209, 174737, 231185, 306049, 384673, 469457, 579217, 722353, 876465, 1025649, 1220337, 1481521, 1733537, 1979713, 2306753, 2697537, 3087777, 3482913, 3959585, 4558737, 5155473
OFFSET
0,2
COMMENTS
Partial sums of A000143.
FORMULA
G.f.: theta_3(x)^8 / (1 - x).
a(n^2) = A055414(n).
MAPLE
b:= proc(n, k) option remember; `if`(n=0, 1, `if`(n<0 or k<1, 0,
b(n, k-1)+2*add(b(n-j^2, k-1), j=1..isqrt(n))))
end:
a:= proc(n) option remember; b(n, 8)+`if`(n>0, a(n-1), 0) end:
seq(a(n), n=0..33); # Alois P. Heinz, Feb 10 2021
MATHEMATICA
nmax = 33; CoefficientList[Series[EllipticTheta[3, 0, x]^8/(1 - x), {x, 0, nmax}], x]
Table[SquaresR[8, n], {n, 0, 33}] // Accumulate
PROG
(Python)
from math import prod
from sympy import factorint
def A341397(n): return (sum((prod((p**(3*(e+1))-(1 if p&1 else 15))//(p**3-1) for p, e in factorint(m).items()) for m in range(1, n+1)))<<4)+1 # Chai Wah Wu, Jun 21 2024
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Feb 10 2021
STATUS
approved