OFFSET
1,1
COMMENTS
All prime divisors of (2Q)^8 + 1 are congruent to 1 modulo 16.
At least one prime divisor of (2Q)^8 + 1 is congruent to 2 modulo 3 and hence to 17 modulo 48.
The first two terms are the same as those of A125040.
REFERENCES
G. A. Jones and J. M. Jones, Elementary Number Theory, Springer-Verlag, NY, (1998), p. 271.
EXAMPLE
a(3) = 33000748370307713 is the smallest prime divisor congruent to 17 mod 48 of (2Q)^8 + 1 = 45820731194492299767895461612240999140120699535617 = 5136468762577 * 33000748370307713 * 270317134666005456817, where Q = 17 * 47441.
MATHEMATICA
a = {17}; q = 1;
For[n = 2, n ≤ 2, n++,
q = q*Last[a];
AppendTo[a, Min[Select[FactorInteger[(2*q)^8 + 1][[All, 1]],
Mod[#, 48] \[Equal] 17 &]]];
];
a (* Robert Price, Jul 14 2015 *)
CROSSREFS
KEYWORD
more,nonn
AUTHOR
Nick Hobson, Nov 18 2006
STATUS
approved