login
A371331
Decimal expansion of Sum_{k>=1} 1/(k^(1/3)*(1+k)).
2
2, 7, 9, 0, 0, 1, 8, 2, 9, 3, 0, 9, 7, 1, 5, 3, 3, 2, 9, 9, 3, 3, 5, 6, 2, 7, 6, 2, 2, 0, 5, 3, 8, 7, 3, 4, 9, 5, 6, 2, 9, 3, 7, 3, 1, 5, 8, 4, 8, 4, 9, 2, 2, 4, 4, 1, 2, 4, 0, 0, 5, 8, 3, 8, 9, 2, 0, 8, 4, 6, 9, 0, 9, 0, 1, 0, 9, 4, 5, 4, 5, 3, 7, 7, 5, 8, 6, 1, 9, 2, 0
OFFSET
1,1
FORMULA
Equals Sum_{i>=0} (-1)^i*zeta(4/3+i).
EXAMPLE
2.790018293097153329933562762205...
PROG
(PARI) sumalt(i=0, (-1)^i*zeta(4/3+i)) \\ Hugo Pfoertner, Mar 19 2024
CROSSREFS
Cf. A226317 (for k^1/2), A371332 (k^1/4), A371333 (k^1/5).
Sequence in context: A250715 A198322 A372422 * A222134 A011355 A240961
KEYWORD
nonn,cons
AUTHOR
R. J. Mathar, Mar 19 2024
STATUS
approved