login
A371332
Decimal expansion of Sum_{k>=1} 1/(k^(1/4)*(1+k)).
2
3, 7, 4, 7, 8, 3, 4, 7, 4, 3, 8, 4, 4, 8, 8, 7, 5, 7, 7, 8, 8, 8, 0, 5, 4, 6, 3, 5, 8, 9, 7, 6, 9, 3, 7, 6, 6, 7, 1, 1, 4, 8, 7, 3, 3, 2, 7, 7, 7, 3, 0, 0, 8, 8, 7, 7, 9, 4, 5, 2, 9, 5, 6, 9, 2, 5, 5, 5, 4, 7, 4, 0, 7, 1, 2, 3, 4, 7, 3, 7, 6, 1, 1, 8, 8, 7, 1, 5, 2, 1, 5
OFFSET
1,1
FORMULA
Equals Sum_{i>=0} (-1)^i*zeta(5/4+i).
EXAMPLE
3.7478347438448875778880546...
PROG
(PARI) sumalt(i=0, (-1)^i*zeta(5/4+i)) \\ Hugo Pfoertner, Mar 19 2024
CROSSREFS
Cf. A226317 (for k^1/2), A371331 (k^1/3), A371333 (k^1/5).
Sequence in context: A340013 A192265 A274511 * A179706 A231325 A227108
KEYWORD
nonn,cons
AUTHOR
R. J. Mathar, Mar 19 2024
STATUS
approved