login
A371328
E.g.f. satisfies A(x) = -log(1 - x/(1 - A(x)))/(1 - A(x))^2.
1
0, 1, 7, 113, 2938, 105834, 4879000, 274224572, 18187943160, 1390554133968, 120409669582344, 11647509131446176, 1244851706649736752, 145678148868683971968, 18526475978057250378144, 2544152133023519899503168, 375205794133263843411479040
OFFSET
0,3
FORMULA
a(n) = Sum_{k=1..n} (n+3*k-2)!/(n+2*k-1)! * |Stirling1(n,k)|.
E.g.f.: Series_Reversion( (1 - x) * (1 - exp(-x * (1 - x)^2)) ). - Seiichi Manyama, Sep 08 2024
PROG
(PARI) a(n) = sum(k=1, n, (n+3*k-2)!/(n+2*k-1)!*abs(stirling(n, k, 1)));
CROSSREFS
Sequence in context: A156240 A152927 A064330 * A159552 A228929 A086788
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Mar 19 2024
STATUS
approved