login
A362953
Numbers N such that N + the sum of the cubes of its digits is again a third power.
3
0, 34, 352, 540, 1167, 1942, 2176, 3312, 4093, 5454, 8019, 9380, 12025, 12130, 13068, 13158, 15344, 15991, 16279, 16675, 21149, 22699, 22789, 30988, 32257, 32365, 35238, 37883, 37955, 41866, 45549, 54523, 57906, 58530, 62579, 72588, 83692, 83782, 89604, 102952
OFFSET
0,2
LINKS
Karl-Heinz Hofmann, Visualization of n = 0 to 11.
EXAMPLE
The sum of the cubes of the digits of N = 34 is 3^3 + 4^3 = 27 + 64 = 91; added to the number N itself yields 125 which is again a cube, 5^3. Therefore 34 is in this sequence.
PROG
(PARI) select( {is(n, p=3)=ispower(vecsum([d^p|d<-digits(n)])+n, p)}, [0..10^5])
(Python)
aupto = 103000
A362953 = []
A000578 = set(cu**3 for cu in range(0, int(aupto**(1/3)+3)))
for n in range(0, aupto+1):
if n + sum(int(digit)**3 for digit in str(n)) in A000578: A362953.append(n)
print(A362953) # Karl-Heinz Hofmann, May 24 2023
CROSSREFS
Cf. A000578 (the cubes), A055012 (sum of cubes of decimal digits of n).
Cf. A362954 (the same for 4th powers).
Sequence in context: A059338 A301954 A368719 * A244881 A296833 A202413
KEYWORD
nonn,base
AUTHOR
Will Gosnell and M. F. Hasler, May 09 2023
STATUS
approved