login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A355260
Triangle read by rows, T(n, k) = Bell(k) * |Stirling1(n, k)|.
1
1, 0, 1, 0, 1, 2, 0, 2, 6, 5, 0, 6, 22, 30, 15, 0, 24, 100, 175, 150, 52, 0, 120, 548, 1125, 1275, 780, 203, 0, 720, 3528, 8120, 11025, 9100, 4263, 877, 0, 5040, 26136, 65660, 101535, 101920, 65366, 24556, 4140, 0, 40320, 219168, 590620, 1009260, 1167348, 920808, 478842, 149040, 21147
OFFSET
0,6
FORMULA
T(n, k) = n! * [y^k] [x^n] exp(1/(1 - x)^y - 1).
T(n, k) = Bell(k)*Bell_{n, k}(A000142), where Bell_{n, k}(S) are the partial Bell polynomials mapped on the sequence S; here S are the factorial numbers. See the Mathematica program.
T(n, k) = A000110(k) * A132393(n, k).
EXAMPLE
Triangle T(n, k) begins:
[0] 1;
[1] 0, 1;
[2] 0, 1, 2;
[3] 0, 2, 6, 5;
[4] 0, 6, 22, 30, 15;
[5] 0, 24, 100, 175, 150, 52;
[6] 0, 120, 548, 1125, 1275, 780, 203;
[7] 0, 720, 3528, 8120, 11025, 9100, 4263, 877;
MAPLE
Bell := n -> combinat[bell](n):
T := (n, k) -> Bell(k)*abs(Stirling1(n, k)):
seq(seq(T(n, k), k = 0..n), n = 0..9);
# Alternative:
egf := exp(1/(1 - x)^y - 1): ser := series(egf, x, 32):
cfx := n -> coeff(ser, x, n):
seq(seq(n!*coeff(cfx(n), y, k), k = 0..n), n = 0..8);
MATHEMATICA
(* Utility function, extracts the lower triangular part of a square matrix. *)
TriangularForm[T_] := Table[Table[T[[n, k]], {k, 1, n}], {n, 1, Dimensions[T][[1]]}];
(* The actual calculation: *)
r := 9; R := Range[0, r];
T := Table[BellB[k] BellY[n, k, R!], {n, R}, {k, R}];
T // TriangularForm // Flatten
CROSSREFS
Cf. A000262 (row sums), A033999 (alternating row sums), A000110 (main diagonal), A000142 (column 1).
Sequence in context: A327116 A157491 A094385 * A291799 A295027 A225479
KEYWORD
nonn,tabl
AUTHOR
Peter Luschny, Jul 06 2022
STATUS
approved