OFFSET
0,6
FORMULA
EXAMPLE
Triangle T(n, k) begins:
[0] 1;
[1] 0, 1;
[2] 0, 1, 2;
[3] 0, 2, 6, 5;
[4] 0, 6, 22, 30, 15;
[5] 0, 24, 100, 175, 150, 52;
[6] 0, 120, 548, 1125, 1275, 780, 203;
[7] 0, 720, 3528, 8120, 11025, 9100, 4263, 877;
MAPLE
Bell := n -> combinat[bell](n):
T := (n, k) -> Bell(k)*abs(Stirling1(n, k)):
seq(seq(T(n, k), k = 0..n), n = 0..9);
# Alternative:
egf := exp(1/(1 - x)^y - 1): ser := series(egf, x, 32):
cfx := n -> coeff(ser, x, n):
seq(seq(n!*coeff(cfx(n), y, k), k = 0..n), n = 0..8);
MATHEMATICA
(* Utility function, extracts the lower triangular part of a square matrix. *)
TriangularForm[T_] := Table[Table[T[[n, k]], {k, 1, n}], {n, 1, Dimensions[T][[1]]}];
(* The actual calculation: *)
r := 9; R := Range[0, r];
T := Table[BellB[k] BellY[n, k, R!], {n, R}, {k, R}];
T // TriangularForm // Flatten
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Peter Luschny, Jul 06 2022
STATUS
approved