This site is supported by donations to The OEIS Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A225479 Triangle read by rows, the ordered Stirling cycle numbers, T(n, k) = k!* s(n, k); n >= 0 k >= 0. 3
 1, 0, 1, 0, 1, 2, 0, 2, 6, 6, 0, 6, 22, 36, 24, 0, 24, 100, 210, 240, 120, 0, 120, 548, 1350, 2040, 1800, 720, 0, 720, 3528, 9744, 17640, 21000, 15120, 5040, 0, 5040, 26136, 78792, 162456, 235200, 231840, 141120, 40320, 0, 40320, 219168, 708744, 1614816 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 0,6 COMMENTS The Digital Library of Mathematical Functions defines the Stirling cycle numbers as (-1)^(n-k) times the Stirling numbers of the first kind. REFERENCES R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics. Addison-Wesley, Reading, MA, 1990, table 245. LINKS Vincenzo Librandi, Rows n = 0..50, flattened Digital Library of Mathematical Functions, Set Partitions: Stirling Numbers S. Eger, Restricted Weighted Integer Compositions and Extended Binomial Coefficients J. Integer. Seq., Vol. 16 (2013), Article 13.1.3 FORMULA For a recursion see the Maple program. T(n, 0) = A000007; T(n, 1) = A000142; T(n, 2) = A052517. T(n, 3) = A052748; T(n, n) = A000142; T(n, n-1) = A001286. row sums = A007840; alternating row sums = A006252. From Peter Bala, Sep 20 2013: (Start) E.g.f.: 1/(1 + x*log(1 - t)) = 1 + x*t + (x + 2*x^2)*t^2/2! + (2*x + 6*x^2 + 6*x^3)*t^3/3! + .... T(n,k) = n!*( the sum of the total weight of the compositions of n into k parts where each part i has weight 1/i ) (see Eger, Theorem 1). An example is given below.  (End) T(n,k) = A132393(n,k) * A000142(k). - Philippe Deléham, Jun 24 2015 EXAMPLE [n\k][0,   1,   2,    3,    4,    5,   6]    1,    0,   1,    0,   1,   2,    0,   2,   6,    6,    0,   6,  22,   36,   24,    0,  24, 100,  210,  240,  120,    0, 120, 548, 1350, 2040, 1800, 720. ... T(4,2) = 22: The table below shows the compositions of 4 into two parts. n = 4    Composition       Weight     4!*Weight             3 + 1            1/3         8             1 + 3            1/3         8             2 + 2          1/2*1/2       6                                         = =                                   total 22 MAPLE A225479 := proc(n, k) option remember; if k > n or  k < 0 then return(0) fi; if n = 0 and k = 0 then return(1) fi; k*A225479(n-1, k-1) + (n-1)*A225479(n-1, k) end; for n from 0 to 9 do seq(A225479(n, k), k = 0..n) od; MATHEMATICA t[n_, k_] := k!*StirlingS1[n, k] // Abs; Table[t[n, k], {n, 0, 9}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jul 02 2013 *) PROG (Sage) def A225479(n, k): return factorial(k)*stirling_number1(n, k) for n in (0..6): [A225479(n, k) for k in (0..n)] CROSSREFS Cf. A048594 (signed version without the first column), A132393. Sequence in context: A094385 A291799 A295027 * A156815 A303439 A303345 Adjacent sequences:  A225476 A225477 A225478 * A225480 A225481 A225482 KEYWORD nonn,tabl AUTHOR Peter Luschny, May 20 2013 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified July 17 02:10 EDT 2019. Contains 325092 sequences. (Running on oeis4.)