login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A351855
Partial sums of nonsquares that are partial sums of nonprimes.
1
5, 64, 506, 64325, 268723, 480129, 6282620, 64548862, 9657523883, 13480852825, 29766135708, 105223301080, 519861666225, 851245744041, 1378216791896, 581522966976875, 583298551668358, 885441628670251, 1651966084813205, 16868988672306046, 17170433482837259
OFFSET
1,1
LINKS
EXAMPLE
a(2) = 64 is a term because 64 = 1+4+6+8+9+10+12+14 = 2+3+5+6+7+8+10+11+12 is the sum of the first 8 nonprimes and the sum of the first 9 nonsquares.
MAPLE
i:= 0: j:= 0: s:= 0: t:= 0:
R:= NULL: count:= 0:
while count < 13 do
if s <= t then
i:= i+1;
if not issqr(i) then
s:= s+i;
if s=t then R:= R, s; count:= count+1 fi;
fi
else
j:= j+1;
if not isprime(j) then
t:= t+j;
if s=t then R:= R, t; count:= count+1 fi;
fi
fi
od:
R;
PROG
(Python)
from itertools import islice
from sympy import nextprime
def A351855_gen(): # generator of terms
c, k, ks, m, p, q = 0, 1, 2, 1, 4, 5
while True:
for n in range(ks, ks+2*k):
c += n
if c == m:
yield c
else:
while c > m:
m += p
p += 1
if p == q:
q = nextprime(q)
p += 1
ks += 2*k+1
k += 1
A351855_list = list(islice(A351855_gen(), 20)) # Chai Wah Wu, Apr 04 2022
CROSSREFS
Intersection of A051349 and A086849.
Sequence in context: A193184 A180787 A222455 * A178295 A054937 A302993
KEYWORD
nonn
AUTHOR
J. M. Bergot and Robert Israel, Mar 31 2022
EXTENSIONS
a(20)-a(21) from Jon E. Schoenfield, Mar 31 2022
STATUS
approved