login
A349162
a(n) = sigma(n) / gcd(sigma(n), A003961(n)), where A003961 shifts the prime factorization of n one step towards larger primes, and sigma is the sum of divisors function.
19
1, 1, 4, 7, 6, 4, 8, 5, 13, 6, 12, 28, 14, 8, 24, 31, 18, 13, 20, 2, 32, 12, 24, 4, 31, 14, 8, 56, 30, 24, 32, 7, 48, 18, 48, 91, 38, 20, 56, 10, 42, 32, 44, 28, 78, 24, 48, 124, 57, 31, 72, 98, 54, 8, 72, 40, 16, 30, 60, 8, 62, 32, 104, 127, 12, 48, 68, 14, 96, 48, 72, 13, 74, 38, 124, 140, 96, 56, 80, 62, 121, 42
OFFSET
1,3
COMMENTS
Denominator of ratio A003961(n) / A000203(n).
Small values are rare, but are not limited to the beginning. For example in range 1 .. 2^25, a(n) = 4 at n = 3, 6, 24, 792, 2720, 122944, 31307472.
Question: Would it be possible to prove that a(n) > 1 for all n > 2?
Obviously, 1's may occur only on squares & twice squares (A028982). See also comments in A350072. - Antti Karttunen, Feb 16 2022
FORMULA
a(n) = A000203(n) / A342671(n) = A000203(n) / gcd(A000203(n), A003961(n)).
MATHEMATICA
Array[#1/GCD[##] & @@ {DivisorSigma[1, #], If[# == 1, 1, Times @@ Map[NextPrime[#1]^#2 & @@ # &, FactorInteger[#]]]} &, 82] (* Michael De Vlieger, Nov 11 2021 *)
PROG
(PARI)
A003961(n) = { my(f = factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); };
A349162(n) = { my(s=sigma(n)); (s/gcd(s, A003961(n))); };
CROSSREFS
Cf. A000203, A003961, A028982 (positions of odd terms), A319630, A336702, A342671, A348992 (the odd part), A348993, A349161 (numerators), A349163, A349164, A349627, A349628, A350072 [= a(n^2)].
Cf. also A349745, A351551, A351554.
Sequence in context: A112518 A228715 A351546 * A351547 A354828 A308366
KEYWORD
nonn,frac
AUTHOR
Antti Karttunen, Nov 09 2021
STATUS
approved