login
A348992
a(n) = A000265(sigma(n)) / gcd(sigma(n), A003961(n)), where A003961(n) is fully multiplicative with a(prime(k)) = prime(k+1), and sigma is the sum of divisors function.
8
1, 1, 1, 7, 3, 1, 1, 5, 13, 3, 3, 7, 7, 1, 3, 31, 9, 13, 5, 1, 1, 3, 3, 1, 31, 7, 1, 7, 15, 3, 1, 7, 3, 9, 3, 91, 19, 5, 7, 5, 21, 1, 11, 7, 39, 3, 3, 31, 57, 31, 9, 49, 27, 1, 9, 5, 1, 15, 15, 1, 31, 1, 13, 127, 3, 3, 17, 7, 3, 3, 9, 13, 37, 19, 31, 35, 3, 7, 5, 31, 121, 21, 21, 7, 27, 11, 3, 5, 45, 39, 7, 7, 1, 3
OFFSET
1,4
COMMENTS
Denominator of ratio A003961(n) / A161942(n).
FORMULA
a(n) = A161942(n) / A342671(n) = A000265(A349162(n)).
a(n) = A003961(A348993(n)).
MATHEMATICA
Array[#1/(2^IntegerExponent[#1, 2]*GCD[##]) & @@ {DivisorSigma[1, #], Times @@ Map[NextPrime[#1]^#2 & @@ # &, FactorInteger[#]]} &, 94] (* Michael De Vlieger, Nov 11 2021 *)
PROG
(PARI)
A000265(n) = (n >> valuation(n, 2));
A003961(n) = { my(f = factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); };
A348992(n) = { my(s=sigma(n)); (A000265(s)/gcd(s, A003961(n))); };
CROSSREFS
Odd part of A349162.
Cf. A349161 (numerators).
Sequence in context: A010139 A078075 A067616 * A199377 A213806 A019856
KEYWORD
nonn,frac
AUTHOR
Antti Karttunen, Nov 10 2021
STATUS
approved