login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 56th year. In the past year we added 10000 new sequences and reached almost 9000 citations (which often say "discovered thanks to the OEIS").
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A028982 Squares and twice squares. 111
1, 2, 4, 8, 9, 16, 18, 25, 32, 36, 49, 50, 64, 72, 81, 98, 100, 121, 128, 144, 162, 169, 196, 200, 225, 242, 256, 288, 289, 324, 338, 361, 392, 400, 441, 450, 484, 512, 529, 576, 578, 625, 648, 676, 722, 729, 784, 800, 841, 882, 900, 961, 968, 1024 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

Numbers n such that sum of divisors of n (A000203) is odd.

Also the numbers with an odd number of run sums (trapezoidal arrangements, number of ways of being written as the difference of two triangular numbers). - Ron Knott, Jan 27 2003

Pell(n)*Sum_{k|n} 1/Pell(k) is odd, where Pell(n) is A000129(n). - Paul Barry, Oct 12 2005

Number of odd divisors of n (A001227) is odd. - Vladeta Jovovic, Aug 28 2007

A071324(a(n)) is odd. - Reinhard Zumkeller, Jul 03 2008

Sigma(a(n)) = A000203(a(n)) = A152677(n). - Jaroslav Krizek, Oct 06 2009

Numbers n such that sum of odd divisors of n (A000593) is odd. - Omar E. Pol, Jul 05 2016

A187793(a(n)) is odd. - Timothy L. Tiffin, Jul 18 2016

If k is odd (k = 2m+1 for m >= 0), then 2^k = 2^(2m+1) = 2*(2^m)^2.  If k is even (k = 2m for m >= 0), then 2^k = 2^(2m) = (2^m)^2.  So, the powers of 2 sequence (A000079) is a subsequence of this one. - Timothy L. Tiffin, Jul 18 2016

Numbers n such that A175317(n) = Sum_{d|n} pod(d) is odd, where pod(m) = the product of divisors of m (A007955). - Jaroslav Krizek, Dec 28 2016

Positions of zeros in A292377 and A292383, positions of ones in A286357 and A292583. (See A292583 for why.) - Antti Karttunen, Sep 25 2017

Numbers of the form A000079(i)*A016754(j), i,j>=0. - R. J. Mathar, May 30 2020

Equivalently, numbers whose odd part is square. Cf. A042968. - Peter Munn, Jul 14 2020

LINKS

T. D. Noe, Table of n, a(n) for n = 1..1000

Tewodros Amdeberhan, Victor H. Moll, Vaishavi Sharma, and Diego Villamizar, Arithmetic properties of the sum of divisors, arXiv:2007.03088 [math.NT], 2020. See p. 5.

J. N. Cooper and A. W. N. Riasanovsky, On the Reciprocal of the Binary Generating Function for the Sum of Divisors, Journal of Integer Sequences, Vol. 16 (2013), #13.1.8.

Patrick De Geest, World!Of Numbers

John S. Rutherford, Sublattice enumeration. IV. Equivalence classes of plane sublattices by parent Patterson symmetry and colour lattice group type, Acta Cryst. (2009). A65, 156-163.

Eric Weisstein's World of Mathematics, Abundance

FORMULA

A001105 UNION A000290.

a(n) is asymptotic to c*n^2 with c = 2/(1+sqrt(2))^2 = 0.3431457.... - Benoit Cloitre, Sep 17 2002

In particular, a(n) = c*n^2 + O(n). - Charles R Greathouse IV, Jan 11 2013

a(A003152(n)) = n^2; a(A003151(n)) = 2*n^2. - Enrique Pérez Herrero, Oct 09 2013

Sum_{n>=1} 1/a(n) = Pi^2/4. - Amiram Eldar, Jun 28 2020

MATHEMATICA

Take[ Sort[ Flatten[ Table[{n^2, 2n^2}, {n, 35}] ]], 57] (* Robert G. Wilson v, Aug 27 2004 *)

PROG

(PARI) list(lim)=vecsort(concat(vector(sqrtint(lim\1), i, i^2), vector(sqrtint(lim\2), i, 2*i^2))) \\ Charles R Greathouse IV, Jun 16 2011

(Haskell)

import Data.List.Ordered (union)

a028982 n = a028982_list !! (n-1)

a028982_list = tail $ union a000290_list a001105_list

-- Reinhard Zumkeller, Jun 27 2015

CROSSREFS

Complement of A028983.

Characteristic function is A053866, A093709.

Odd terms in A178910.

Cf. A000203, A000290, A000593, A001105, A042968, A187793.

Supersequence of A000079.

Sequence in context: A336232 A242662 A335851 * A320137 A324525 A175338

Adjacent sequences:  A028979 A028980 A028981 * A028983 A028984 A028985

KEYWORD

nonn,easy

AUTHOR

Patrick De Geest

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 23 14:26 EST 2020. Contains 338590 sequences. (Running on oeis4.)