OFFSET
1,3
LINKS
EXAMPLE
The a(1) = 1 through a(16) = 10 partitions (A..G = 10..16):
1 2 3 4 5 6 7 8 9 A B C D E F G
21 41 42 43 62 63 64 65 84 85 86 87 A6
321 61 81 82 83 A2 A3 A4 A5 C4
621 631 A1 642 C1 C2 C3 E2
4321 632 651 643 653 E1 943
641 921 652 932 654 952
931 941 942 961
8321 951 C31
C21 8431
8421 8521
54321
MATHEMATICA
Table[Length[Select[IntegerPartitions[n], UnsameQ@@#&&Divisible[Max@@#, Length[#]]&]], {n, 30}]
CROSSREFS
Note: A-numbers of Heinz-number sequences are in parentheses below.
A096401 counts strict partition with length equal to minimum.
A102627 counts strict partitions with length dividing sum.
A326850 counts strict partitions whose maximum part divides sum.
A326851 counts strict partitions with length and maximum dividing sum.
A340829 counts strict partitions with Heinz number divisible by sum.
A340830 counts strict partitions with all parts divisible by length.
KEYWORD
nonn
AUTHOR
Gus Wiseman, Feb 01 2021
STATUS
approved