OFFSET
1,1
COMMENTS
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. The sum of prime indices of n is A056239(n). For example, the prime indices of 99 are {2,2,5}, with sum 9, a divisor of 99, so 99 is in the sequence.
For any k>=2, let d be a divisor of k such that d > A056239(k). Then 2^(d-A056239(k))*k is in the sequence. Similarly if k is in the sequence with d = A056239(k), then 2^d*k is in the sequence. - Robert Israel, Mar 19 2019
LINKS
Robert Israel, Table of n, a(n) for n = 1..10000
EXAMPLE
The sequence of terms together with their prime indices begins:
2: {1}
4: {1,1}
6: {1,2}
12: {1,1,2}
15: {2,3}
16: {1,1,1,1}
20: {1,1,3}
30: {1,2,3}
35: {3,4}
36: {1,1,2,2}
42: {1,2,4}
48: {1,1,1,1,2}
56: {1,1,1,4}
88: {1,1,1,5}
99: {2,2,5}
112: {1,1,1,1,4}
120: {1,1,1,2,3}
126: {1,2,2,4}
130: {1,3,6}
135: {2,2,2,3}
MAPLE
filter:= proc(n) local t; n mod add(numtheory:-pi(t[1])*t[2], t=ifactors(n)[2]) = 0 end proc:
select(filter, [$1..1000]); # Robert Israel, Mar 19 2019
MATHEMATICA
Select[Range[2, 100], Divisible[#, Plus@@Cases[If[#==1, {}, FactorInteger[#]], {p_, k_}:>PrimePi[p]*k]]&]
PROG
(PARI) isok(n) = {my(f = factor(n)); (n!=1) && !(n % sum(k=1, #f~, primepi(f[k, 1])*f[k, 2])); } \\ Michel Marcus, Mar 19 2019
CROSSREFS
KEYWORD
nonn
AUTHOR
Gus Wiseman, Mar 18 2019
STATUS
approved