

A316428


Heinz numbers of integer partitions such that every part is divisible by the number of parts.


4



1, 2, 3, 5, 7, 9, 11, 13, 17, 19, 21, 23, 29, 31, 37, 39, 41, 43, 47, 49, 53, 57, 59, 61, 67, 71, 73, 79, 83, 87, 89, 91, 97, 101, 103, 107, 109, 111, 113, 125, 127, 129, 131, 133, 137, 139, 149, 151, 157, 159, 163, 167, 169, 173, 179, 181, 183, 191, 193, 197
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,2


COMMENTS

The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).


LINKS

Table of n, a(n) for n=1..60.


EXAMPLE

93499 is the Heinz number of (12,8,8,4) and belongs to the sequence because each part is divisible by 4.
Sequence of partitions such that every part is divisible by the number of parts begins (1), (2), (3), (4), (2,2), (5), (6), (7), (8), (4,2), (9).


MATHEMATICA

Select[Range[200], And@@Cases[If[#==1, {}, FactorInteger[#]], {p_, k_}:>Divisible[PrimePi[p], PrimeOmega[#]]]&]


CROSSREFS

Cf. A056239, A067538, A074761, A143773, A237984, A289509, A296150, A298423, A316413.
Sequence in context: A328336 A305103 A065520 * A277702 A279516 A329559
Adjacent sequences: A316425 A316426 A316427 * A316429 A316430 A316431


KEYWORD

nonn


AUTHOR

Gus Wiseman, Jul 02 2018


STATUS

approved



