login
A336699
a(n) = A000265(1+A000265(sigma(A000265(n)))), where A000265(k) gives the odd part of k, and sigma is the sum of divisors function.
7
1, 1, 1, 1, 1, 1, 1, 1, 7, 1, 1, 1, 1, 1, 1, 1, 5, 7, 3, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 5, 1, 7, 5, 3, 1, 1, 11, 1, 3, 1, 5, 1, 1, 1, 29, 1, 5, 1, 7, 3, 5, 1, 3, 1, 1, 1, 1, 1, 7, 1, 11, 1, 9, 5, 1, 1, 5, 7, 19, 5, 1, 3, 1, 1, 3, 1, 61, 11, 11, 1, 7, 3, 1, 1, 23, 5, 1, 1, 1, 1, 1, 1, 25, 29, 5, 1, 13, 5, 7, 1, 1
OFFSET
1,9
COMMENTS
See the "lacunae" in the scatter plot. - Antti Karttunen, Mar 27 2022
FORMULA
a(n) = A000265(1+A000265(A000593(n))) = A000265(1+A161942(A000265(n))).
a(n) = A336698(A000265(n)).
From Antti Karttunen, Mar 27 2022: (Start)
a(n) = A351565(A000593(n)).
[The following formulas were discovered by Sequence Machine]:
a(n) = A351565(A002131(n)) = A000265(1+A000265(A002131(n))).
a(n) = A336698(1+A322250(n)).
a(n) = A171435(A000593(n)+A082903(n)).
(End)
PROG
(PARI)
A000265(n) = (n>>valuation(n, 2));
A336699(n) = A000265(1+A000265(sigma(A000265(n))));
KEYWORD
nonn,look
AUTHOR
Antti Karttunen, Aug 02 2020
STATUS
approved